Определение натуральных чисел цифры и числа. Числа

Натуральные числа — одно из старейших математических понятий.

В далёком прошлом люди не знали чисел и, когда им требовалось пересчитать предметы (животных, рыбу и т.д.), они делали это не так, как мы сейчас.

Количество предметов сравнивали с частями тела, например, с пальцами на руке и говорили: «У меня столько же орехов, сколько пальцев на руке».

Со временем люди поняли, что пять орехов, пять коз и пять зайцев обладают общим свойством — их количество равно пяти.

Запомните!

Натуральные числа — это числа, начиная с 1 , получаемые при счете предметов.

1, 2, 3, 4, 5…

Наименьшее натуральное число — 1 .

Наибольшего натурального числа не существует.

При счёте число ноль не используется. Поэтому ноль не считается натуральным числом.

Записывать числа люди научились гораздо позже, чем считать. Раньше всего они стали изображать единицу одной палочкой, потом двумя палочками — число 2 , тремя — число 3 .

| — 1, || — 2, ||| — 3, ||||| — 5 …

Затем появились и особые знаки для обозначения чисел — предшественники современных цифр. Цифры, которыми мы пользуемся для записи чисел, родились в Индии примерно 1 500 лет назад. В Европу их привезли арабы, поэтому их называют арабскими цифрами .

Всего цифр десять: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 . С помощью этих цифр можно записать любое натуральное число.

Запомните!

Натуральный ряд — это последовательность всех натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 …

В натуральном ряду каждое число больше предыдущего на 1 .

Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует.

Систему счёта (счисления), который мы пользуемся, называют десятичной позиционной .

Десятичной потому, что 10 единиц каждого разряда образуют 1 единицу старшего разряда. Позиционной потому, что значение цифры зависит от её места в записи числа, то есть от разряда, в котором она записана.

Важно!

Следующие за миллиардом классы названы в соответствии с латинскими наименованиями чисел. Каждая следующая единица содержит тысячу предыдущих.

  • 1 000 миллиардов = 1 000 000 000 000 = 1 триллион («три» — по латыни «три»)
  • 1 000 триллионов = 1 000 000 000 000 000 = 1 квадриллион («квадра» — по латыни «четыре»)
  • 1 000 квадриллионов = 1 000 000 000 000 000 000 = 1 квинтиллион («квинта» — по латыни «пять»)

Однако, физики нашли число, которое превосходит количество всех атомов (мельчайших частиц вещества) во всей Вселенной.

Это число получило специальное название — гугол . Гугол — число, у которого 100 нулей.

Определение

Натуральными числами называются числа, которые используются при счете или для указания порядкового номера предмета среди однородных предметов.

Например. Натуральными будут такие числа: $2,37,145,1059,24411$

Натуральные числа, записанные в порядке возрастания, образуют числовой ряд. Он начинается с наименьшего натурально числа 1. Множество всех натуральных чисел обозначают $N=\{1,2,3, \dots n, \ldots\}$. Оно бесконечно, так как не существует наибольшего натурального числа. Если к любому натуральному числу прибавить единицу, то получаем натуральное число, следующее за данным числом.

Пример

Задание. Какие из следующих чисел являются натуральными?

$$-89 ; 7 ; \frac{4}{3} ; 34 ; 2 ; 11 ; 3,2 ; \sqrt{129} ; \sqrt{5}$$

Ответ. $7 ; 34 ; 2 ; 11$

На множестве натуральных чисел вводится две основные арифметические операции - сложение и умножение . Для обозначения этих операций используются соответственно символы " + " и " " (или " × " ).

Сложение натуральных чисел

Каждой паре натуральных чисел $n$ и $m$ ставится в соответствие натуральное число $s$, называемое суммой. Сумма $s$ состоит из стольких единиц, сколько их содержится в числах $n$ и $m$. О числе $s$ говорят, что оно получено в результате сложения чисел $n$ и $m$, и пишут

Числа $n$ и $m$ называются при этом слагаемыми. Операция сложения натуральных чисел обладает следующими свойствами:

  1. Коммутативность: $n+m=m+n$
  2. Ассоциативность: $(n+m)+k=n+(m+k)$

Подробнее о сложении чисел читайте по ссылке .

Пример

Задание. Найти сумму чисел:

$13+9 \quad$ и $ \quad 27+(3+72)$

Решение. $13+9=22$

Для вычисления второй суммы, для упрощения вычислений, применим к ней вначале свойство ассоциативности сложения:

$$27+(3+72)=(27+3)+72=30+72=102$$

Ответ. $13+9=22 \quad;\quad 27+(3+72)=102$

Умножение натуральных чисел

Каждой упорядоченной паре натуральных чисел $n$ и $m$ ставится в соответствие натуральное число $r$, называемое их произведением. Произведение $r$ содержит стольких единиц, сколько их содержится в числе $n$, взятых столько раз, сколько единиц содержится в числе $m$. О числе $r$ говорят, что оно получено в результате умножения чисел $n$ и $m$, и пишут

$n \cdot m=r \quad $ или $ \quad n \times m=r$

Числа $n$ и $m$ называются множителями или сомножителями.

Операция умножения натуральных чисел обладает следующими свойствами:

  1. Коммутативность: $n \cdot m=m \cdot n$
  2. Ассоциативность: $(n \cdot m) \cdot k=n \cdot(m \cdot k)$

Подробнее о умножении чисел читайте по ссылке .

Пример

Задание. Найти произведение чисел:

12$\cdot 3 \quad $ и $ \quad 7 \cdot 25 \cdot 4$

Решение. По определению операции умножения:

$$12 \cdot 3=12+12+12=36$$

Ко второму произведению применим свойство ассоциативности умножения:

$$7 \cdot 25 \cdot 4=7 \cdot(25 \cdot 4)=7 \cdot 100=700$$

Ответ. $12 \cdot 3=36 \quad;\quad 7 \cdot 25 \cdot 4=700$

Операция сложения и умножения натуральных чисел связаны законом дистрибутивности умножения относительно сложения:

$$(n+m) \cdot k=n \cdot k+m \cdot k$$

Сумма и произведение любых двух натуральных чисел всегда есть число натуральное, поэтому множество всех натуральных чисел замкнуто относительно операций сложения и умножения.

Так же на множестве натуральных чисел можно ввести операции вычитания и деления , как операции обратные к операциям сложения и умножения соответственно. Но эти операции не будут однозначно определенны для любой пары натуральных чисел.

Свойство ассоциативности умножения натуральных чисел позволяет ввести понятие натуральной степени натурального числа: $n$-й степенью натурального числа $m$ называется натуральное число $k$, полученное в результате умножения числа $m$ самого на себя $n$ раз:

Для обозначения $n$-й степени числа $m$ обычно используется запись: $m^{n}$, в котором число $m$ называется основанием степени , а число $n$ - показателем степени .

Пример

Задание. Найти значение выражения $2^{5}$

Решение. По определению натуральной степени натурального числа это выражение можно записать следующим образом

$$2^{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32$$

Навигация по странице:

Определение. Натуральные числа - это числа, которые используются для счета: 1 , 2 , 3 , …, n , …

Множество натуральных чисел принято обозначать символом N (от лат. naturalis - естественный).

Натуральные числа в десятичной системе счисления записываются с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Множество натуральных чисел - является упорядоченным множеством , т.е. для любых натуральных чисел m и n справедливо одно из соотношений:

  • либо m = n (m равно n ),
  • либо m > n (m больше n ),
  • либо m < n (m меньше n ).
  • Наименьшее натурально число - единица (1 )
  • Наибольшего натурального числа не существует .
  • Нуль (0 ) не является натуральным числом.
Множество натуральных чисел бесконечно , так как для любого числа n всегда найдется число m , которое больше n

Из соседних натуральных чисел, число, которое стоит левее числа n называется предыдущим числу n , а число, которое стоит правее называется следующим за n .

Операции над натуральными числами

К замкнутым операциям над натуральными числами (операциям в результате, которых получается натуральных чисел) относятся следующие арифметические операции:

  • Сложение
  • Умножение
  • Возведение в степень a b , где a - основание степени и b - показатель степени. Если основание и показатель - натуральные числа, то и результат будет являться натуральным числом.

Дополнительно рассматривают ещё две операции. С формальной точки зрения они не являются операциями над натуральными числами, так как их результат не всегда будет натуральным числом.

  • Вычитание (При этом Уменьшаемое должно быть больше Вычитаемого)
  • Деление

Классы и разряды

Разряд - положение (позиция) цифры в записи числа.

Низший разряд - самый правый. Старший разряд - самый левый.

Пример:

5 - единиц, 0 - десятков, 7 - сотен,
2 - тысячи, 4 - десятков тысяч, 8 - сотен тысяч,
3 - миллиона, 5 - десятков миллионов, 1 - сотня миллионов

Для удобства чтения, натуральных числа разбивают, на группы по три цифры в каждой начиная справа.

Класс - группа из трех цифр, на который разбито число, начиная справа. Последний класс может состоять из трех, двух или одной цифры.

  • Первый класс - класс единиц;
  • Второй класс - класс тысяч;
  • Третий класс - класс миллионов;
  • Четвертый класс - класс миллиардов;
  • Пятый класс - класс триллионов;
  • Шестой класс - класс квадрильонов (квадриллионов);
  • Седьмой класс - класс квинтильонов (квинтиллионов);
  • Восьмой класс - класс секстильонов;
  • Девятый класс - класс септильонов;

Пример:

34 - миллиарда 456 миллионов 196 тысяч 45

Сравнение натуральных чисел

  1. Сравнение натуральных чисел с разным количеством цифр

    Среди натуральных чисел больше то, у которого больше цифр
  2. Сравнение натуральных чисел с равным количеством цифр

    Сравнить числа поразрядно, начиная со старшего разряда. Больше то, у которого больше единиц в наивысшем одноименном разряде

Пример:

3466 > 346 - так как число 3466 состоит из 4 цифр, а число 346 из 3 цифр.

34666 < 245784 - так как число 34666 состоит из 5 цифр, а число 245784 из 6 цифр.

Пример:

346 667 670 52 6 986

346 667 670 56 9 429

Второе из натуральных чисел с равным количеством цифр больше, так как 6 > 2.

Что же такое натуральные и ненатуральные числа? Как объяснить ребенку, а может и не ребенку, в чем же отличия между ними? Давайте разбираться. Насколько известно, ненатуральные и натуральны числа изучают в 5 классе, и нашей целью является объяснить ученикам так, чтобы они действительно поняли и усвоили, что и как.

История

Натуральные числа - это одно из давних понятий. Давным-давно, когда люди еще не умели считать и не имели понятия о числах, когда им требовалось что-либо пересчитать, к примеру, рыбу, животных, они выбивали на различных предметах точечки или черточки, как это позже выяснилось археологами. В то время им было очень тяжело жить, но цивилизация развилась сначала до римской системы счисления, а затем до десятичной системы счисления. Сейчас же почти все используют арабские цифры

Все о натуральных числах

Натуральные числа - это простые числа, которыми мы пользуемся в повседневной нашей жизни для подсчета предметов для того, чтобы определить количество и порядок. В настоящее время для записи чисел мы используем десятичную систему счисления. Для того чтобы записать любое число, мы используем десять цифр - от нуля до девяти.

Натуральные числа - это те числа, которые мы используем при счете предметов или указании порядкового номера чего-либо. Пример: 5, 368, 99, 3684.

Числовым рядом называют натуральные числа, которые расположены в порядке возрастания, т.е. от единицы до бесконечности. Такой ряд начинается с наименьшего числа - 1, а наибольшего натурального числа не бывает, так как ряд чисел просто бесконечен.

Вообще, ноль - натуральным числом не считается, так как он означает отсутствие чего-либо, и счет предметов так же отсутствует

Арабская система счисления - это современная система, которой мы пользуемся каждый день. Она является одним из вариантов индийской (десятичной).

Такая система счисления стала современной из-за цифры 0, которую и изобрели арабы. До этого в индийской системе она отсутствовала.

Ненатуральные числа. Что это?

К натуральным числам не относятся отрицательные числа и нецелые. Значит, они и есть - ненатуральные числа

Ниже приведены примеры.

Ненатуральные числа бывают:

  • Отрицательные числа, например: -1, -5, -36.. и так далее.
  • Рациональные числа, которые выражены десятичными дробями: 4,5, -67, 44,6.
  • В виде простой дроби: 1 / 2, 40 2 /7 и т.д.
  • Иррациональные числ, такие, как e = 2,71828, √2 = 1,41421 и тому подобное.

Мы надеемся, что очень помогли вам разобраться с ненатуральными и натуральными числами. Теперь вам станет легче объяснить своему малышу данную тему, и он усвоит ее так же хорошо, как великие математики!

Математика выделилась из общей философии примерно в шестом веке до н. э., и с этого момента началось ее победное шествие по миру. Каждый этап развития вносил что-то новое - элементарный счет эволюционировал, преображался в дифференциальное и интегральное исчисление, сменялись века, формулы становились все запутаннее, и настал тот момент, когда «началась самая сложная математика - из нее исчезли все числа». Но что же лежало в основе?

Начало начал

Натуральные числа появились наравне с первыми математическими операциями. Раз корешок, два корешок, три корешок… Появились они благодаря индийским ученым, которые вывели первую позиционную

Слово «позиционность» означает, что расположение каждой цифры в числе строго определено и соответствует своему разряду. Например, числа 784 и 487 - цифры одни и те же, но числа не являются равносильными, так как первое включает в себя 7 сотен, тогда как второе - только 4. Нововведение индийцев подхватили арабы, которые довели числа до того вида, который мы знаем сейчас.

В древности числам придавалось мистическое значение, Пифагор полагал, что число лежит в основе сотворения мира наравне с основными стихиями - огнем, водой, землей, воздухом. Если рассматривать все лишь с математической стороны, то что такое натуральное число? Поле натуральных чисел обозначается как N и представляет собой бесконечный ряд из чисел, которые являются целыми и положительными: 1, 2, 3, … + ∞. Ноль исключается. Используется в основном для подсчета предметов и указания порядка.

Что такое в математике? Аксиомы Пеано

Поле N является базовым, на которое опирается элементарная математика. С течением времени выделяли поля целых, рациональных,

Работы итальянского математика Джузеппе Пеано сделали возможной дальнейшую структуризацию арифметики, добились ее формальности и подготовили почву для дальнейших выводов, которые выходили за рамки области поля N.

Что такое натуральное число, было выяснено ранее простым языком, ниже будет рассмотрено математическое определение на базе аксиом Пеано.

  • Единица считается натуральным числом.
  • Число, которое идет за натуральным числом, является натуральным.
  • Перед единицей нет никакого натурального числа.
  • Если число b следует как за числом c, так и за числом d, то c=d.
  • Аксиома индукции, которая в свою очередь показывает, что такое натуральное число: если некоторое утверждение, которое зависит от параметра, верно для числа 1, то положим, что оно работает и для числа n из поля натуральных чисел N. Тогда утверждение верно и для n=1 из поля натуральных чисел N.

Основные операции для поля натуральных чисел

Так как поле N стало первым для математических расчетов, то именно к нему относятся как области определения, так и области значений ряда операций ниже. Они бывают замкнутыми и нет. Основным различием является то, что замкнутые операции гарантированно оставляют результат в рамках множества N вне зависимости от того, какие числа задействованы. Достаточно того, что они натуральные. Исход остальных численных взаимодействий уже не столь однозначен и напрямую зависит от того, что за числа участвуют в выражении, так как он может противоречить основному определению. Итак, замкнутые операции:

  • сложение - x + y = z, где x, y, z включены в поле N;
  • умножение - x * y = z, где x, y, z включены в поле N;
  • возведение в степень - x y , где x, y включены в поле N.

Остальные операции, итог которых может не существовать в контексте определения "что такое натуральное число", следующие:


Свойства чисел, принадлежащих полю N

Все дальнейшие математические рассуждения будут основываться на следующих свойствах, самых тривиальных, но от этого не менее важных.

  • Переместительное свойство сложения - x + y = y + x, где числа x, y включены в поле N. Или всем известное "от перемены мест слагаемых сумма не меняется".
  • Переместительное свойство умножения - x * y = y * x, где числа x, y включены в поле N.
  • Сочетательное свойство сложения - (x + y) + z = x + (y + z), где x, y, z включены в поле N.
  • Сочетательное свойство умножения - (x * y) * z = x * (y * z), где числа x, y, z включены в поле N.
  • распределительное свойство - x (y + z) = x * y + x * z, где числа x, y, z включены в поле N.

Таблица Пифагора

Одним из первых шагов в познании школьниками всей структуры элементарной математики после того, как они уяснили для себя, какие числа называются натуральными, является таблица Пифагора. Ее можно рассматривать не только с точки зрения науки, но и как ценнейший научный памятник.

Данная таблица умножения претерпела с течением времени ряд изменений: из нее убрали ноль, а числа от 1 до 10 обозначают сами себя, без учета порядков (сотни, тысячи...). Она представляет собой таблицу, в которой заглавия строк и столбцов - числа, а содержимое ячеек их пересечения равно их же произведению.

В практике обучения последних десятилетий наблюдалась необходимость заучивания таблицы Пифагора "по порядку", то есть сначала шло зазубривание. Умножение на 1 исключалось, так как результат был равен 1 или большему множителю. Между тем в таблице невооруженным взглядом можно заметить закономерность: произведение чисел растет на один шаг, который равен заглавию строки. Таким образом, второй множитель показывает нам, сколько раз нужно взять первый, дабы получить искомое произведение. Данная система не в пример удобнее той, что практиковалась в средние века: даже понимая, что такое натуральное число и насколько оно тривиально, люди умудрялись осложнять себе повседневный счет, пользуясь системой, которая базировалась на степенях двойки.

Подмножество как колыбель математики

На данный момент поле натуральных чисел N рассматривается лишь как одно из подмножеств комплексных чисел, но это не делает их менее ценными в науке. Натуральное число - первое, что познает ребенок, изучая себя и окружающий мир. Раз пальчик, два пальчик... Благодаря ему у человека формируется логическое мышление, а также умение определять причину и выводить следствие, подготавливая почву для больших открытий.



Понравилась статья? Поделиться с друзьями: