Что такое целые отрицательные числа. Сравнение отрицательных и положительных чисел

В данной статье определим множество целых чисел, рассмотрим, какие целые называются положительными, а какие отрицательными. Также покажем, как целые числа используются для описания изменения некоторых величин. Начнем с определения и примеров целых чисел.

Yandex.RTB R-A-339285-1

Целые числа. Определение, примеры

Вначале вспомним про натуральные числа ℕ . Само название говорит о том, что это такие числа, которые естественно использовались для счета с незапамятных времен. Для того, чтобы охватить понятие целых чисел, нам нужно расширить определение натуральных чисел.

Определение 1. Целые числа

Целые числа - это натуральные числа, числа, противоположные им, и число нуль.

Множество целых чисел обозначается буквой ℤ .

Множество натуральных чисел ℕ - подмножество целых чисел ℤ . Любое натуральное число является целым, но не любое целое число является натуральным.

Из определения следует, что целым является любое из чисел 1 , 2 , 3 . . , число 0 , а также числа - 1 , - 2 , - 3 , . .

В соответствии с этим, приведем примеры. Числа 39 , - 589 , 10000000 , - 1596 , 0 являются целыми числами.

Пусть координатная прямая проведена горизонтально и направлена вправо. Взглянем на нее, чтобы наглядно представить расположение целых чисел на прямой.

Началу отсчета на координатной прямой соответствует число 0 , а точкам, лежащим по обе стороны от нуля соответствуют положительные и отрицательные целые числа. Каждой точке соответствует единственное целое число.

В любую точку прямой, координатой которой является целое число, можно попасть, отложив от начала координат некоторое количество единичных отрезков.

Положительные и отрицательные целые числа

Из всех целых чисел логично выделить положительные и отрицательные целые числа. Дадим их определения.

Определение 2. Положительные целые числа

Положительные целые числа - это целые числа со знаком "плюс".

Например, число 7 - целое число со знаком плюс, то есть положительное целое число. На координатной прямой это число лежит справа от точки отсчета, за которую принято число 0 . Другие примеры положительных целых чисел: 12 , 502 , 42 , 33 , 100500 .

Определение 3. Отрицательные целые числа

Отрицательные целые числа - это целые числа со знаком "минус".

Примеры целых отрицательных чисел: - 528 , - 2568 , - 1 .

Число 0 разделяет положительные и отрицательные целые числа и само не является ни положительным, ни отрицательным.

Любое число, противоположное положительному целому числу, в силу определения, является отрицательным целым числом. Справедливо и обратное. Число, обратное любому отрицательному целому числу, есть положительное целое число.

Можно дать другие формулировки определений отрицательных и положительных целых чисел, используя их сравнение с нулем.

Определение 4. Положительные целые числа

Положительные целые числа - это целые числа, которые больше нуля.

Определение 5. Отрицательные целые числа

Отрицательные целые числа - это целые числа, которые меньше нуля.

Соответственно, положительные числа лежат правее начала отсчета на координатной прямой, а отрицательные целые числа находятся левее от нуля.

Ранее мы уже говорили, что натуральные числа - это подмножество целых. Уточним этот момент. Множество натуральных чисел составляют целые положительные числа. В свою очередь, множество отрицательных целых чисел является множеством чисел, противоположных натуральным.

Важно!

Любое натуральное число можно назвать целым, но любое целое число нельзя назвать натуральным. Отвечая на вопрос, являются ли являются ли отрицательные числа натуральными, нужно смело говорить - нет, не являются.

Неположительные и неотрицательные целые числа

Дадим определения.

Определение 6. Неотрицательные целые числа

Неотрицательные целые числа - это положительные целые числа и число нуль.

Определение 7. Неположительные целые числа

Неположительные целые числа - это отрицательные целые числа и число нуль.

Как видим, число нуль не является ни положительным, ни отрицательным.

Примеры неотрицательных целых чисел: 52 , 128 , 0 .

Примеры неположительных целых чисел: - 52 , - 128 , 0 .

Неотрицательное число - это число, большее или равное нулю. Соответственно, неположительное целое число - это число, меньшее или равное нулю.

Термины "неположительное число" и "неотрицательное число" используются для краткости. Например, вместо того, чтобы говорить, что число a - целое число, которое больше или равно нулю, можно сказать: a - целое неотрицательное число.

Использование целых чисел при описании изменения величин

Для чего используются целые числа? В первую очередь, с их помощью удобно описывать и определять изменение количества каких-либо предметов. Приведем пример.

Пусть на складе хранится какое-то количество коленвалов. Если на склад привезут еще 500 коленвалов, то их количество увеличится. Число 500 как раз и выражает изменение (увеличение) количества деталей. Если потом со склада увезут 200 деталей, то это число также будет характеризовать изменение количества коленвалов. На этот раз, в сторону уменьшения.

Если же со склада ничего не будут забирать, и ничего не будут привозить, то число 0 укажет на неизменность количества деталей.

Очевидное удобство использования целых чисел в отличие от натуральных в том, что их знак явно указывает на направление изменения величины (увеличение или убывание).

Понижение температуры на 30 градусов можно охарактеризовать отрицательным числом - 30 , а увеличение на 2 градуса - положительным целым числом 2 .

Приведем еще один пример с использованием целых чисел. На этот раз, представим, что мы должны отдать кому-то 5 монет. Тогда, можно сказать, что мы обладаем - 5 монетами. Число 5 описывает размер долга, а знак "минус" говорит о том, что мы должны отдать монеты.

Если мы должны 2 монеты одному человеку, а 3 - другому, то общий долг (5 монет) можно вычислить по правилу сложения отрицательных чисел:

2 + (- 3) = - 5

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Содержание статьи

Понятие числа в математике может относиться к объектам различной природы: натуральным числам, используемым при счете (положительным целым числам 1, 2, 3 и т.д.), числам, являющимся возможными результатами (идеализированных) измерений (это такие числа, как 2/3, – их называют действительными числами), отрицательным числам, мнимым числам (скажем, к ) и к другим более абстрактным классам чисел, используемым в высших разделах математики (например, к гиперкомплексным и трансфинитным числам). Число необходимо отличать от его символа, или обозначения, которое его представляет. Мы рассмотрим логические отношения между различными классами чисел.

Такие загадки легко разрешаются, если принять во внимание, что различные классы чисел имеют совершенно различный смысл; хотя у них достаточного много общего, чтобы их всех можно было называть числами, не следует думать, что все они будут удовлетворять одним и тем же правилам.

Положительные целые числа.

Хотя мы все усваиваем положительные целые числа (1, 2, 3 и т.д.) в раннем детстве, когда вряд ли приходит в голову задумываться об определениях, тем не менее такие числа могут быть определены по всем правилам формальной логики. Строгое определение числа 1 заняло бы не один десяток страниц, а формула типа 1 + 1 = 2, если записать ее во всех подробностях без каких-либо сокращений, протянулась бы на несколько километров. Однако любая математическая теория вынуждена начинаться с некоторых неопределяемых понятий и аксиом или постулатов относительно них. Так как положительные целые числа хорошо известны и трудно определить их с помощью чего-то более простого, мы примем их за исходные неопределяемые понятия и будем считать, что основные свойства этих чисел известны.

Отрицательные целые числа и нуль.

Отрицательные числа в наши дни вещь обыденная: их используют, например, для того, чтобы представить температуру ниже нуля. Поэтому кажется удивительным, что еще несколько столетий назад какой-либо конкретной интерпретации отрицательных чисел не было, а возникающие по ходу вычислений отрицательные числа назывались «воображаемыми». Несмотря на то, что интуитивная интерпретация отрицательных чисел сама по себе полезна, пытаясь понять такие «правила», как (–4)ґ(–3) = +12, мы должны определить отрицательные числа с помощью положительных. Для этого нам нужно построить множество таких математических объектов, которые будут вести себя в арифметике и алгебре именно так, как можно было бы ожидать от отрицательных чисел. Один из способов построить такое множество состоит в рассмотрении упорядоченных пар положительных чисел (a ,b ). «Упорядоченность» означает, что, например, пара (2,3) отлична от пары (3,2). Такие упорядоченные пары можно рассматривать как новый класс чисел. Теперь мы должны сказать, когда два таких новых числа равны и что означает их сложение и умножение. Наш выбор определений обусловлен желанием, чтобы пара (a ,b ) действовала как разность (a b ), которая пока что определена, лишь когда a больше b . Так как в алгебре (a – b ) + (c – d ) = (a + c ) – (b + d ), мы приходим к необходимости определить сложение новых чисел как (a ,b ) + (c ,d ) = (a + c , b + d ); т.к. (a b )ґ(c d ) = ac + bd – (bc + ad ), мы определяем умножение равенством (a ,b )ґ(c ,d ) = (ac + bd , bc + ad ); а так как (a – b ) = (c – d ), если a + d = b + c , мы определяем равенство новых чисел соотношением (a ,b ) = (c ,d ), если a + d = b + c . Таким образом,

Используя определения равенства пар, можно записать сумму и произведение пар в более простом виде:

Все пары (a ,a ) равны (по определению равенства пар) и действуют так, как по нашим ожиданиям должен действовать нуль . Например, (2,3) + (1,1) = (3,4) = (2,3); (2,3)ґ(1,1) = (2 + 3, 2 + 3) = (5,5) = (1,1). Пары (a ,a ) мы можем обозначить символом 0 (который до сих пор не использовали).

Пары (a ,b ), где b больше a , ведут себя так, как должны были бы действовать отрицательные числа, и мы можем обозначить пару (a ,b ) символом –(b a ). Например, -4 – это (1,5), а -3 – это (1,4); (–4)ґ(–3) = (21,9), или (13,1). Последнее число хотелось бы обозначить как 12, но это заведомо не то же самое, что положительное целое число 12, поскольку обозначает пару положительных целых чисел, а не одно положительное целое число. Необходимо подчеркнуть, что поскольку пары (a ,b ), где b меньше a , действуют как положительные целые числа (a b ), мы будем записывать такие числа как (a b ). При этом надо забыть о положительных целых числах, с которых мы начали, и впредь пользоваться только нашими новыми числами, которые назовем целыми числами . То, что мы намереваемся использовать старые названия для некоторых новых чисел, не должно вводить в заблуждение относительно того, что в действительности новые числа представляют собой объекты иного рода.

Дроби.

Интуитивно мы представляем себе дробь 2/3 как результат разбиения 1 на три равные части и взятия двух из них. Однако математик стремится как можно меньше полагаться на интуицию и определять рациональные числа через более простые объекты – целые числа. Это можно сделать, если 2/3 рассматривать как упорядоченную пару (2,3) целых чисел. Для завершения определения необходимо сформулировать правила равенства дробей, а также сложения и умножения. Разумеется, эти правила должны быть эквивалентны правилам арифметики и, естественно, отличаться от правил для тех упорядоченных пар, которые мы определили как целые числа. Вот эти правила:

Нетрудно видеть, что пары (a ,1) действуют как целые числа a ; продолжая рассуждать так же, как в случае отрицательных чисел, мы обозначим через 2 дробь (2,1), или (4,2), или любую другую дробь, равную (2,1). Забудем теперь о целых числах и сохраним их лишь как средство записи определенных дробей.

Рациональные и иррациональные числа.

Дроби принято также называть рациональными числами, так как они представимы в виде отношений (от лат. ratio – отношение) двух целых чисел. Но если нам потребуется число, квадрат которого равен 2, то мы не сможем обойтись рациональными числами, т.к. не существует рационального числа, квадрат которого равен 2. То же самое выяснится, если поинтересоваться числом, выражающим отношение длины окружности к ее диаметру. Следовательно, если мы хотим получить квадратные корни из всех положительных чисел, то нам необходимо расширить класс рациональных чисел. Новые числа, называемые иррациональными (т.е. не рациональными), можно определять различными способами. Упорядоченные пары для этого не годятся; один из простейших способов состоит в том, чтобы определить иррациональные числа как бесконечные непериодические десятичные дроби.

Действительные числа.

Рациональные и иррациональные числа вместе называются действительными или вещественными числами. Геометрически их можно представить точками на прямой, при этом дроби оказываются в промежутках между целыми числами, а иррациональные числа – в промежутках между дробями, как показано на рис. 1. Можно показать, что система действительных чисел обладает свойством, известным как «полнота» и означающим, что каждой точке на прямой соответствует некоторое действительное число.

Комплéксные числа.

Так как квадраты положительных и отрицательных действительных чисел положительны, на прямой действительных чисел нет точки, соответствующей числу, квадрат которого был бы равен -1. Но если бы мы попытались решать квадратные уравнения типа x 2 + 1 = 0, то необходимо было бы поступать так, как если бы существовало некоторое число i , квадрат которого был бы равен -1. Но поскольку такого числа нет, нам не остается ничего другого, как воспользоваться «воображаемым», или «мнимым», числом. Соответственно, «число» i и его комбинации с обычными числами (типа 2 + 3i ) стали называться мнимыми. Современные математики предпочитают называть такие числа «комплéксными», поскольку они, как мы увидим, столь же «реальны», как и те, с которыми нам уже доводилось встречаться раньше. Долгое время математики свободно пользовались мнимыми числами и получали полезные результаты, хотя не до конца понимали то, что они делали. И до начала 19 в. никому и в голову не приходило «оживить» мнимые числа с помощью их явного определения. Для этого нужно построить некоторую совокупность математических объектов, которые с точки зрения алгебры вели бы себя как выражения a + bi , если условиться, что i 2 = –1. Такие объекты можно определить следующим образом. Рассмотрим в качестве наших новых чисел упорядоченные пары действительных чисел, сложение и умножение которых определяется формулами:

Назовем такие упорядоченные пары комплéксными числами. Пары частного вида (a ,0) со вторым членом, равным нулю, ведут себя как действительные числа, поэтому мы условимся обозначать их так же: например, 2 означает (2,0). С другой стороны, комплексное число (0,b ) по определению умножения обладает свойством (0,b )ґ(0,b ) = (0 – b 2 , 0 + 0) = (–b 2 ,0) = –b 2 . Например, в случае (0,1)ґ(0,1) мы находим произведение (-1,0); следовательно, (0,1) 2 = (–1,0). Мы уже условились записывать комплексное число (-1,0) как -1, поэтому если число (0,1) обозначить символом i , то мы получим комплексное число i , такое, что i 2 = –1. Кроме того, комплексное число (2,3) теперь можно записать в виде 2 + 3i .

Важное отличие такого подхода к комплексным числам от традиционного состоит в том, что в данном случае число i не содержит ничего загадочного или мнимого: оно представляет собой нечто, хорошо определяемое посредством уже существовавших ранее чисел, хотя, разумеется, и не совпадает ни с одним из них. Точно так же, действительное число 2 не является комплексным, хотя мы и используем символ 2 для обозначения комплексного числа. Так как на самом деле в мнимых числах нет ничего «мнимого», то неудивительно, что они широко используются в реальных ситуациях, например в электротехнике (где вместо буквы i обычно используют букву j , так как в электротехнике i – символ для текущего значения силы тока).

Алгебра комплексных чисел во многом напоминает алгебру действительных чисел, хотя имеются и существенные различия. Например, правило для комплексных чисел не выполняется: , поэтому , в то время как .

Сложение комплексных чисел допускает простую геометрическую интерпретацию. Например, сумма чисел 2 + 3i и 3 – i есть число 5 + 2i , которому соответствует четвертая вершина параллелограмма с тремя вершинами в точках 0, 2 + 3i и 3 – i .

Точку на плоскости можно задавать не только прямоугольными (декартовыми) координатами (x ,y ), но и ее полярными координатами (r ,q ), задающими расстояние от точки до начала координат и угол. Следовательно, комплексное число x + iy может быть записано и в полярных координатах (рис. 2,б ). Длина радиуса-вектора r равна расстоянию от начала координат до точки, соответствующей комплексному числу; величина r называется модулем комплексного числа и определяется по формуле . Часто модуль записывают в виде . Угол q называется «углом», «аргументом» или «фазой» комплексного числа. Такое число имеет бесконечно много углов, отличающихся на величину, кратную 360°; например, i имеет угол 90°, 450°, -270°, ј Так как декартовы и полярные координаты одной и той же точки связаны между собой соотношениями x = r cos q , y = r sin q , справедливо равенство x + iy = r (cos q + i sin q ).

Если z = x + iy , то число x – iy называется комплексно сопряженным с z и обозначается n z = re iq . Логарифм комплексного числа re iq , по определению, равен ln r + iq , где ln означает логарифм по основанию e , а q принимает все возможные значения, измеряемые в радианах. Таким образом, комплексное число имеет бесконечно много логарифмов. Например, ln (–2) = ln 2 + ip + любое целое кратное 2p . В общем виде степени можно теперь определить с помощью соотношения a b = e b ln a . Например, i –2i = e –2 ln i . Так как значения аргумента числа i равны p /2 (90°, выраженное в радианах) плюс целое кратное, то число i –2i имеет значения e p , e 3 p , e -p и т.д., которые все являются действительными.

Гиперкомплексные числа.

Комплексные числа были изобретены, чтобы иметь возможность решать все квадратные уравнения с действительными коэффициентами. Можно показать, что на самом деле комплексные числа позволяют сделать гораздо больше: с их введением становятся разрешимыми алгебраические уравнения любой степени даже с комплексными коэффициентами. Следовательно, если бы нас интересовали только решения алгебраических уравнений, то необходимость во введении новых чисел отпала бы. Однако для других целей необходимы числа, устроенные в чем-то аналогично комплексным, но с бóльшим количеством компонент. Иногда такие числа называют гиперкомплексными. Их примерами могут служить кватернионы и матрицы.

К целым числам относятся натуральные числа, ноль, а также числа, противоположные натуральным.

Натуральные числа — это положительные целые числа.

К примеру: 1, 3, 7, 19, 23 и т.д. Такие числа мы используем для подсчета (на столе лежит 5 яблок, у машины 4 колеса и др.)

Латинской буквой \mathbb{N} — обозначается множество натуральных чисел .

К натуральным числам нельзя отнести отрицательные (у стула не может быть отрицательное количество ножек) и дробные числа (Иван не мог продать 3,5 велосипеда).

Числами, противоположными натуральным, являются отрицательные целые числа: −8, −148, −981, … .

Арифметические действия с целыми числами

Что можно делать с целыми числами? Их можно перемножать, складывать и вычитать друг из друга. Разберем каждую операцию на конкретном примере.

Сложение целых чисел

Два целых числа с одинаковыми знаками складываются следующим образом: производится сложение модулей этих чисел и перед полученной суммой ставится итоговый знак:

(+11) + (+9) = +20

Вычитание целых чисел

Два целых числа с разными знаками складываются следующим образом: из модуля большего числа вычитается модуль меньшего и перед полученным ответом ставят знак большего по модулю числа:

(-7) + (+8) = +1

Умножение целых чисел

Чтобы умножить одно целое число на другое нужно выполнить перемножение модулей этих чисел и поставить перед полученным ответом знак «+ », если исходные числа были с одинаковыми знаками, и знак «− », если исходные числа были с разными знаками:

(-5) \cdot (+3) = -15

(-3) \cdot (-4) = +12

Следует запомнить следующее правило перемножения целых чисел :

+ \cdot + = +

+ \cdot - = -

- \cdot + = -

- \cdot - = +

Существует правило перемножения нескольких целых чисел. Запомним его:

Знак произведения будет «+ », если количество множителей с отрицательным знаком четное и «− », если количество множителей с отрицательным знаком нечетное.

(-5) \cdot (-4) \cdot (+1) \cdot (+6) \cdot (+1) = +120

Деление целых чисел

Деление двух целых чисел производится следующим образом: модуль одного числа делят на модуль другого и если знаки чисел одинаковые, то перед полученным частным ставят знак «+ », а если знаки исходных чисел разные, то ставится знак «− ».

(-25) : (+5) = -5

Свойства сложения и умножения целых чисел

Разберем основные свойства сложения и умножения для любых целых чисел a , b и c :

  1. a + b = b + a - переместительное свойство сложения;
  2. (a + b) + c = a + (b + c) - сочетательное свойство сложения;
  3. a \cdot b = b \cdot a - переместительное свойство умножения;
  4. (a \cdot c) \cdot b = a \cdot (b \cdot c) - сочетательное свойства умножения;
  5. a \cdot (b \cdot c) = a \cdot b + a \cdot c - распределительное свойство умножения.

Натуральные числа

Натуральные числа определение - это целые положительные числа. Натуральные числа используют для счета предметов и многих иных целей. Вот эти числа:

Это натуральный ряд чисел.
Ноль натуральное число? Нет, ноль не является натуральным числом.
Сколько натуральных чисел существует? Существует бесконечное множество натуральных чисел.
Каково наименьшее натуральное число? Единица - это наименьшее натуральное число.
Каково наибольшее натуральное число? Его невозможно указать, ведь существует бесконечное множество натуральных чисел.

Сумма натуральных чисел есть натуральное число. Итак, сложение натуральных чисел a и b:

Произведение натуральных чисел есть натуральное число. Итак, произведение натуральных чисел a и b:

с - это всегда натуральное число.

Разность натуральных чисел Не всегда есть натуральное число. Если уменьшаемое больше вычитаемого, то разность натуральных чисел есть натуральное число, иначе - нет.

Частное натуральных чисел Не всегда есть натуральное число. Если для натуральных чисел a и b

где с - натуральное число, то это значит, что a делится на b нацело. В этом примере a - делимое, b - делитель, c - частное.

Делитель натурального числа - это натуральное число, на которое первое число делится нацело.

Каждое натуральное число делится на единицу и на себя.

Простые натуральные числа делятся только на единицу и на себя. Здесь имеется ввиду делятся нацело. Пример, числа 2; 3; 5; 7 делятся только на единицу и на себя. Это простые натуральные числа.

Единицу не считают простым числом.

Числа, которые больше единицы и которые не являются простыми, называют составными. Примеры составных чисел:

Единицу не считают составным числом.

Множество натуральных чисел составляют единица, простые числа и составные числа.

Множество натуральных чисел обозначается латинской буквой N.

Свойства сложения и умножения натуральных чисел:

переместительное свойство сложения

сочетательное свойство сложения

(a + b) + c = a + (b + c);

переместительное свойство умножения

сочетательное свойство умножения

(ab) c = a (bc);

распределительное свойство умножения

A (b + c) = ab + ac;

Целые числа

Целые числа - это натуральные числа, ноль и числа, противоположные натуральным.

Числа, противоположные натуральным - это целые отрицательные числа, например:

1; -2; -3; -4;...

Множество целых чисел обозначается латинской буквой Z.

Рациональные числа

Рациональные числа - это целые числа и дроби.

Любое рациональное число может быть представлено в виде периодической дроби. Примеры:

1,(0); 3,(6); 0,(0);...

Из примеров видно, что любое целое число есть периодическая дробь с периодом ноль.

Любое рациональное число может быть представлено в виде дроби m/n, где m целое число,n натуральное число. Представим в виде такой дроби число 3,(6) из предыдущего примера.


Информация этой статьи формирует общее представление о целых числах . Сначала дано определение целых чисел и приведены примеры. Далее рассмотрены целые числа на числовой прямой, откуда становится видно, какие числа называются целыми положительными числами, а какие – целыми отрицательными. После этого показано, как при помощи целых чисел описываются изменения величин, и рассмотрены целые отрицательные числа в смысле задолженности.

Навигация по странице.

Целые числа – определение и примеры

Определение.

Целые числа – это натуральные числа, число нуль, а также числа, противоположные натуральным.

Определение целых чисел утверждает, что любое из чисел 1 , 2 , 3 , …, число 0 , а также любое из чисел −1 , −2 , −3 , … является целым. Теперь мы легко можем привести примеры целых чисел . Например, число 38 – целое, число 70 040 – тоже целое, нуль – целое число (напомним, что нуль НЕ является натуральным числом, нуль – целое число), числа −999 , −1 , −8 934 832 – также являются примерами целых чисел.

Все целые числа удобно представлять как последовательность целых чисел, которая имеет следующий вид: 0, ±1, ±2, ±3, … Последовательность целых чисел можно записать и так: …, −3, −2, −1, 0, 1, 2, 3, …

Из определения целых чисел следует, что множество натуральных чисел является подмножеством множества целых чисел. Поэтому, любое натуральное число является целым, но не любое целое число является натуральным.

Целые числа на координатной прямой

Определение.

Целые положительные числа – это целые числа, которые больше нуля.

Определение.

Целые отрицательные числа – это целые числа, которые меньше нуля.

Целые положительные и отрицательные числа можно также определить по их положению на координатной прямой. На горизонтальной координатной прямой точки, координатами которых являются целые положительные числа, лежат правее начала отсчета. В свою очередь точки с целыми отрицательными координатами располагаются левее точки O .

Понятно, что множество всех целых положительных чисел представляет собой множество натуральных чисел. В свою очередь множество всех целых отрицательных чисел – это множество всех чисел, противоположных натуральным числам.

Отдельно обратим Ваше внимание на то, что любое натуральное число мы можем смело назвать целым, а любое целое число мы НЕ можем назвать натуральным. Натуральным мы можем назвать лишь любое целое положительное число, так как целые отрицательные числа и нуль не являются натуральными.

Целые неположительные и целые неотрицательные числа

Дадим определения целых неположительных чисел и целых неотрицательных чисел.

Определение.

Все целые положительные числа вместе с числом нуль называют целыми неотрицательными числами .

Определение.

Целые неположительные числа – это все целые отрицательные числа вместе с числом 0 .

Другими словами, целое неотрицательное число – это целое число, которое больше нуля, либо равно нулю, а целое неположительное число – это целое число, которое меньше нуля, либо равно нулю.

Примерами целых неположительных чисел являются числа −511 , −10 030 , 0 , −2 , а в качестве примеров целых неотрицательных чисел приведем числа 45 , 506 , 0 , 900 321 .

Наиболее часто термины «целые неположительные числа» и «целые неотрицательные числа» используют для краткости изложения. Например, вместо фразы «число a целое, причем a больше нуля или равно нулю» можно сказать «a – целое неотрицательное число».

Описание изменения величин при помощи целых чисел

Пришло время поговорить о том, для чего вообще нужны целые числа.

Основное предназначение целых чисел заключается в том, что с их помощью удобно описывать изменение количества каких-либо предметов. Разберемся с этим на примерах.

Пусть на складе находится некоторое количество деталей. Если на склад привезут еще, к примеру, 400 деталей, то количество деталей на складе увеличится, а число 400 выражает это изменение количества в положительную сторону (в сторону увеличения). Если же со склада заберут, например, 100 деталей, то количество деталей на складе уменьшится, а число 100 будет выражать изменение количества в отрицательную сторону (в сторону уменьшения). На склад не будут привозить детали, и не будут увозить детали со склада, то можно говорить о неизменности количестве деталей (то есть можно будет говорить о нулевом изменении количества).

В приведенных примерах изменение количества деталей можно описать при помощи целых чисел 400 , −100 и 0 соответственно. Положительное целое число 400 показывает изменение количества в положительную сторону (увеличение). Отрицательное целое число −100 выражает изменение количества в отрицательную сторону (уменьшение). Целое число 0 показывает, что количество осталось без изменения.

Удобство использования целых чисел по сравнению с использованием натуральных чисел заключается в том, что не нужно явно указывать увеличивается количество или уменьшается, - целое число определяет изменение количественно, а знак целого числа указывает направление изменения.

Целые числа также могут выражать не только изменение количества, но и изменение какой-либо величины. Разберемся с этим на примере изменения температуры.

Повышение температуры, скажем, на 4 градуса выражается положительным целым числом 4 . Понижение температуры, например, на 12 градусов можно описать отрицательным целым числом −12 . А неизменность температуры – это ее изменение, определяемое целым числом 0 .

Отдельно нужно сказать о трактовке отрицательных целых чисел как величины долга. Например, если у нас есть 3 яблока, то целое положительное число 3 показывает количество яблок, которыми мы владеем. С другой стороны, если мы должны кому-либо отдать 5 яблок, а у нас их нет в наличии, то эту ситуацию можно описать при помощи отрицательного целого числа −5 . В этом случае мы «обладаем» −5 яблоками, знак минус указывает на долг, а число 5 определяет долг количественно.

Понимание отрицательного целого числа в качестве долга позволяет, например, обосновать правило сложения отрицательных целых чисел . Приведем пример. Если кто-то должен 2 яблока одному человеку и одно яблоко – другому, то общий долг составляет 2+1=3 яблока, поэтому −2+(−1)=−3 .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.


Понравилась статья? Поделиться с друзьями: