Сообщение на тему история развития чисел. Из истории возникновения чисел

Множество простых и привычных вещей, с которыми мы ежедневно сталкиваемся, очень часто хранят в себе загадки и факты. Например, вам наверняка будет интересно узнать, как появились цифры, кто их придумал, и почему они имеют именно такой вид.

История возникновения цифр

Первобытные люди, еще не придумав цифры, считали при помощи пальцев рук и ног. Загибая и разгибая пальцы, люди производили сложение и вычитание. Поэтому, существует мнение, что счет десятками произошел именно от количества пальцев на руках и ногах.

Затем в процессе эволюции, люди начали использовать вместо пальцев узелки на веревке, палочки, камушки, или зарубки на коре. Это значительно облегчало счет, однако большие числа показать и сосчитать, таким образом, было не возможно. Поэтому люди придумали изображать числа знаками (точки, черточки, галочки).

Откуда появились цифры «арабскими» знаками, историки точно не знают, однако достоверно известно, что современные числа мы имеем благодаря индийским астрономам и их расчетам, которые сохранились в многочисленных документах. Поэтому возможно, что современная система счисления - это индийское изобретение.

Как изменялись цифры

Арабский учёный Мухаммед ибн Мусса аль - Хорезми впервые использовал индийскую систему нумерации. Он упростил ее и разработал обоснованную систему начертания цифр. Так цифры (1,2,3….) стали обозначаться соответствующим количеством углов. Многие из чисел уже тогда были похожи на цифры, которые мы сейчас применяем.

В середине VIII века к знакам, представляющим собой числа, были введены точка, а затем кружочек, который со временем стал обозначать нуль. Ученые считают, что нуль является важнейшим открытием в математике, так как именно этот знак послужил образованию десятичной системы.

Со временем знаки имели изменения, они становились более округлыми, появлялись новые черточки и символы, с помощью которых становилось проще выражать какие либо значения.

В Европе арабские цифры получили распространение благодаря итальянским купцам. Математик Леонардо Фибоначчи ознакомил купцов с арабской нумерацией, которая оказалась очень удобной и легкой в применении. Таким образом, система счисления индийско-арабскими цифрами стала самой популярной по всему миру.

Возникновение чисел в нашей жизни не случайность. Невозможно представить себе общение без использования чисел. История чисел увлекательна и загадочна. Человечеству удалось установить целый ряд законов и закономерностей мира чисел, разгадать кое-какие тайны и использовать свои открытия в повседневной жизни. Без замечательной науки о числах – математики – немыслимо сегодня ни прошлое, ни будущее. А сколько ещё неразгаданного!

Древние люди не умели считать. Да и считать им было нечего, потому что предметов, которыми они пользовались – орудий труда, – было совсем немного: один топор, одно копье Постепенно количество вещей увеличивалось, обмен ими усложнялся и возникала потребность в счете. Издавна числа казались людям чем-то таинственным. Любой предмет можно было увидеть и потрогать. Число потрогать нельзя, и вместе с тем числа реально существуют, поскольку все предметы можно посчитать. Эта странность заставила людей приписывать числам сверхъестественные свойства

В наш скоростной быстролётный век – век большого изобилия информации, различных печатных изданий и виртуального мира трудно чем - либо удивить людей. Написать, создать что-либо, да так, чтобы интересно было читать! Итак

С самого раннего детства мы знакомимся с числами. А какие же бывают числа? На этот вопрос я попыталась ответить в своей работе. Моя работа можно - это мини-пособие для ознакомления с таким интересным понятием как «Числа». Возможно, не все подробно, но в своей работе я старалась затронуть все аспекты, связанные с выбранной темой. Этой работой могут воспользоваться те, кто хочет знать о математике больше, чем рядовой школьник.

История развития числа

На первых этапах существования человеческого общества числа служили для примитивного счета предметов, дней, шагов. В первобытном обществе человек нуждался лишь в нескольких первых числа. С развитием цивилизации ему потребовалось изобретать все больше числа, этот процесс продолжался на протяженности многих столетий и требовал напряженного интеллектуального труда. При обмене продуктами появилась необходимость сравнивать числа, возникли понятия больше, меньше, равно. На этом же этапе люди стали складывать числа, затем научились вычитать, делить, умножать. При делении двух натуральных чисел появились дроби, при вычитании – отрицательные числа.

Необходимость выполнять арифметические действия привела к понятию рациональных чисел. В IV в. до н. э. греческие математики открыли несоизмеримые отрезки, длины которых не выражались ни целым, ни дробным числом (например, длина диагонали квадрата со стороной, равной 1). Потребовалась не одна сотня лет, чтобы математики смогли выработать способ записи таких чисел в виде бесконечной непериодической десятичной дроби. Так появились иррациональные числа, которые вместе с рациональными назвали действительными числами.

Но затем выяснилось, что во множестве действительных чисел не имеют решения простейшие квадратные уравнения, например, х2 + 1 = 0. Математики пришли к необходимости расширить понятия числа, чтобы в новом множестве можно было всегда извлечь квадратный корень. Новое множество назвали множеством комплексных чисел, введя понятие мнимой единицы: i2 = – 1.

Выражение вида а + вi назвали комплексным числом. Долгое время многие ученые не признавали их за числа. Только после того, как нашли возможность представить мнимое число геометрически, так называемые мнимые числа получили свое место во множестве чисел.

N – натуральные числа.

Q – рациональные числа.

R – действительные числа.

Комплексными называются числа вида а + вi, где а и в – действительные числа, i – мнимая единица: i2 = – 1. а называется действительной частью, вi – мнимой частью комплексного числа.

Определение. Два комплексных числа называются равными, если равны их действительные части и коэффициенты при мнимых частях, т. е. а + вi = с + di a = c, b = d.

Для комплексных чисел не существует соотношений «больше», «меньше».

Учёные математики, которые внесли

Вклад в развитие теории чисел

Мы живем в мире больших чисел

Задумывались ли вы когда-нибудь о том, сколько километров проходит человек за свою жизнь, сколько товаров производится и приходит в негодность ежечасно в пределах города, страны? Во сколько раз скорость пассажирского реактивного самолета превосходит скорость тренированного спортсмена-пешехода? Ответы на эти и тысячи подобных вопросов выражаются числами, занимающими зачастую по числу своих десятичных разрядов целую строку и даже больше.

Для сокращения записи больших чисел давно используется система величин, в которой каждая из последующих в тысячу раз больше предыдущей:

1000 единиц – просто тысяча (1000 или 1 тыс.)

1000 тысяч – 1 миллион

1000 миллионов – 1 биллион (или 1 миллиард)

1000 биллионов – 1 триллион

1000 триллионов – 1 квадриллион

1000 квадриллионов – 1 квинтиллион

1000 квинтиллионов – 1 секстиллион

1000 секстиллионов – 1 септиллион

1000 нониллионов – 1 дециллион и т. д.

Таким образом, 1 дециллион запишется в десятичной системе единицей с 3 * 11= 33 нулями. 1. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000.

«Напрасно думают, что ноль играет маленькую роль»

Самуил Яковлевич Маршак

Степень числа – произведение его самого на себя требуемое число раз, которое называется показателем степени (а само число – ее основанием). Например, 3 * 3= 32 (здесь 3 – основание, 2- показатель степени), 2 * 2 * 2= 23, 10 * 10= 102=100, 105= 10 * 10 * 10 * 10 * 10= 100000.

Заметьте, что число нулей степени 10 всегда равно ее показателю:

101=10, 102 =100, 103 =1000 и т. д.

И еще одно: математики во всем мире давно приняли, что любое число в нулевой степени равно единице (а0 =1). При записи больших чисел часто используют степень числа 10.

Единица – 100=1

Тысяча – 103= 1000

Миллион – 106= 1000 000

Биллион – 109= 1000 000 000

Триллион – 1012=1000 000 000 000

Квадриллион – 1015 =1000 000 000 000 000

Квинтиллион – 1018 =1000 000 000 000 000 000

Секстиллион – 1021 = 1000 000 000 000 000 000 000

Септиллион – 1024 = 1000 000 000 000 000 000 000 000

Октиллион - 1027 = 1000 000 000 000 000 000 000 000 000

Теперь приведем несколько интересных сведений:

Радиус Земли – 6400 км.

Длина Земного экватора – около 40 тыс. км.

Площадь Земного шара 510 млн. км.

Среднее расстояние от Земли до Солнца – 150 млн. км.

Диаметр нашей Галактики – 85 тыс. световых лет.

С начала нашей эры прошло немногим более миллиарда секунд.

Число Шахерезады

Существуют числа, носящие имена великих математиков: число Архимеда - , Неперово число – основание натуральных логарифмов е=2, 718281 [Непер Джон (150-1617), шотландский математик, изобретатель логарифмов].

Число, о котором пойдет речь, не менее популярно. Это 1001. Его иногда называют числом Шехерезады, известно каждому, кто читал сказки «Тысяча и одна ночь». Число 1001 обладает рядом интересных свойств:

1. Это самое маленькое натуральное четырехзначное число, которое можно представить в виде суммы кубов двух натуральных чисел: 1001=103+13.

2. Состоит из 77 «злополучных чертовых дюжин». (1001=77*13), из 91 одиннадцатки или 143 семерок (вспомним, что число «7» считалось магическим числом); далее, если будем считать, что год равен 52 неделям, то 1001=143*7=(104+26+13)*7=2 года + ½ года+ ¼ года

3. На свойствах числа 1001 базируется метод определения делимости числа на 7, на 11 и на 13.

Рассмотрим этот метод на примерах:

Делится ли на 7 число 348285?

348285=348*1000+285=348*1000+348-348+285=348*1001-(348-285)

Так как 1001 делится на 7, то чтобы 348285 делилось на 7, достаточно, чтобы на 7 делилась разность 348-285. Так как 348-285=63, то 348285 делится на 7.

Таким образом, чтобы узнать, делится ли число на 7 (на 11 или 13), необходимо от этого числа без последних трех цифр отнять число из трех последних цифр; если эта разность делится на 7 (11 или 13), то и заданное число также делится на 7 (11 или 13).

Задумайтесь, может и вы найдёте сказочное число. Внесите свой вклад в царицу наук - МАТЕМАТИКУ!!!

Взаимно- обратные числа

Обратное число́ (обратное значение, обратная величина) - это число, на которое надо умножить данное число, чтобы получить единицу. Два таких числа называются взаимно обратными.

Примеры: 5 и 1/5, −6/7 и −7/6, π и 1 / π

Для всякого числа а, не равного нулю, существует обратное 1/a.

На земном шаре обитают птицы – безошибочные составители прогноза погоды на лето. Название этих птиц зашифровано примерами, записанными на доске. Последовательно решив примеры и заменив ответы буквами, вы прочтёте название птиц – метеорологов.

1. 17/8 5/6 6/5;

2. 3,4 7/3 3/7;

3. 11/12 5,6 12/11;

4. 2,5 0,4 3;

5. 2/3 0,1 3/2;

6. 41/2 1/2 2;

8. 11/12 31/3 12/11.

17/8 31/3 0,1 3,4 3 41/2 5,6 1

ф о и л м н а г

Простые числа

«Простые числа остаются всегда готовыми ускользнуть от исследования»

Если записать натуральные числа в ряд, и в тех местах, где стоят простые числа, зажечь фонарики, то не нашлось в этом ряду места, где была бы сплошная темнота. Фонарики расположились бы очень причудливо. Между ними есть только одно число - четное, это 2, а остальные нечетные. 2 и 3 последовательные натуральные числа, наименьшие простые -такая пара единственная, где одно число четное, а другое нечетное.

1, 2, 3,4 ,5 ,6, 7,8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Два последовательных нечетных числа, каждое из которых является простым – называются числами – близнецами.

Первые простые числа-близнецы:

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61),

(71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193),

(197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349),

(419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619),

(641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883)

Греческий ученый Евклид в своей книге «Начала» утверждал следующее: «Самого большого числа не существует». До сих пор неизвестно, есть ли самые большие числа-близнецы. И до сих пор нет ответа на вопрос: существует ли бесконечно много пар простых чисел-близнецов.

Первым глубокие исследования о том, как разбросаны простые числа среди натуральных, получил русский математик Пафнутий Львович Чебышев. Но до сих пор математики не знают формулы, с помощью которой можно получить простые числа одно за другим, нет даже формулы, дающей только простые числа.

Над тем, как составить список простых чисел, задумался живущей в 3 веке до нашей эры александрийский ученый Эратосфен. Его имя вошло в науку в связи с методом отыскания простых чисел. В древности писали на восковых табличках острой палочкой-стилем, поэтому Эратосфен «выкалывал» составные числа острым концом стиля. После выкалывания всех составных чисел таблица напоминала решето. Отсюда и название «решето Эратосфена». Древнегреческих ученых заинтересовало: сколько может быть всех простых чисел в натуральном ряду.

В 1750 году Леонард Эймер установил, что число 231 – 1 является простым. Оно оставалось самым большим из известных простых чисел более ста лет. В 1876 году французский математик Лукас установил, что огромное число

2127 – 1 = 170. 141. 183. 460. 469. 231. 731. 678. 303. 715. 884. 105. 727 также простое. Оно содержит 39 цифр. Для его вычисления были использованы механические настольные счетные машины. В 1957 году было найдено следующее простое число: 23217- 1. А простое число 244497-1 состоит из 13000 цифр.

Рациональные числа

Рациональное число (лат. ratio - отношение, деление, дробь) - число, представляемое обыкновенной дробью, где m - целое число, а n - натуральное число. При этом число m называется числителем, а число n - знаменателем дроби. Такую дробь следует интуитивно понимать, как результат деления m на n, даже если нацело разделить не удаётся. В реальной жизни можно использовать рациональные числа для счёта частей некоторых целых, но делимых объектов, например, тортов или других продуктов, разрезаемых на несколько частей перед употреблением, или для грубой оценки пространственных отношений протяжённых объектов.

Совершенные числа

Совершенное число́ (др. греч. ἀριθμὸς τέλειος) - натуральное число, равное сумме всех своих собственных делителей (т. е. всех положительных делителей, отличных от самого́ числа).

Первое совершенное число - 6 (1 + 2 + 3 = 6), следующее - 28 (1 + 2 + 4 + 7 + 14 = 28). По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже. Третье совершенное число - 496, четвёртое - 8128, пятое - 33 550 336, шестое - 8 589 869 056 (последовательность A000396 в OEIS).

«Перестаньте отыскивать интересные числа!

Оставьте для интереса хотя бы одно неинтересное число!»

Из письма читателя Мартину Гарднеру

Среди всех интересных натуральных чисел, издавна изучаемых математиками, особое место занимают совершенные и близко связанные с ними дружественные числа.

Совершенным называется число, равное сумме всех своих делителей (включая 1, но исключая само число). Наименьшее из совершенных чисел 6 равно сумме трех своих делителей 1, 2 и 3. Следующее совершенное число 28=1+2+4+7+14. Ранние комментаторы Ветхого завета, пишет в своей книге «Математические новеллы» Мартин Гарднер, усматривали в совершенстве чисел 6 и 28 особый смысл. Разве не за 6 дней был сотворен мир, восклицали они, и разве Луна обновляется не за 28 суток?

Первым крупным достижением теории совершенных чисел была теорема Евклида о том, что число 2n-1(2n-1) - четное и совершенное, если число 2n-1 - простое 1. Лишь две тысячи лет спустя Эйлер доказал, что формула Евклида содержит все четные совершенные числа. Поскольку не известно ни одного нечетного совершенного числа (у читателей есть шанс найти его и прославить свое имя), то обычно, говоря о совершенных числах, имеют в виду четное совершенное число.

Приглядевшись к формуле Евклида, мы увидим связь совершенных чисел с членами геометрической прогрессии 1, 2, 4, 8, 16, Эту связь лучше проследить на примере древней легенды, согласно которой Раджа обещал изобретателю шахмат любую награду. Изобретатель попросил положить на первую клетку шахматной доски одно зерно пшеницы, на вторую клетку - два зерна, на третью - четыре, на четвертую - восемь и так далее. На последнюю, 64-ю клетку, должно быть насыпано 263 зерен, а всего на шахматной доске окажется «кучка» из 264-1 зерен пшеницы. Это больше, чем собрано во всех урожаях за историю человечества.

Если на каждой клетке шахматной доски мы напишем, сколько зерен пшеницы причиталось бы за нее изобретателю шахмат, а затем снимем с каждой клетки по одному зерну, то число оставшихся зерен будет точно соответствовать выражению, стоящему в скобках в формуле Евклида. Если это число простое, то, умножив его на число зерен на предыдущей клетке (то есть на 2n-1), мы получим совершенное число! Простые числа вида 2n-1 называются числами Мерсенна в честь французского математика XVII века. На шахматной доске со снятыми по одному зерну с каждой клетки есть девять чисел Мерсенна, соответствующих девяти простым числам, меньших 64, а именно: 2, 3, 5, 7, 13, 17, 19, 31 и 61. Умножив их на число зерен на предыдущих клетках, мы получим девять первых совершенных чисел. (Числа n=29, 37, 41, 43, 47, 53, и 59 не дают числа Мерсенна, т. е. соответствующие им числа 2n-1 составные.)

Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел. Например, все совершенные числа треугольные. Это значит, что, взяв совершенное число шаров, мы всегда сможем сложить из них равносторонний треугольник. Из той же формулы Евклида следует другое любопытное свойство совершенных чисел: все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 13+33+53+ Еще более удивительно, что сумма величин, обратных всем делителям совершенного числа, включая его самого, всегда равна 2. Например, взяв делители совершенного числа 28, получим:

Кроме того, интересны представление совершенных чисел в двоичной форме, чередование последних цифр совершенных чисел и другие любопытные вопросы, которые можно найти в литературе по занимательной математике. Главные из них - наличие нечетного совершенного числа и существование наибольшего совершенного числа - до сих пор не решены.

От совершенных чисел повествование непременно перетекает к дружественным числам. Это такие два числа, каждое из которых равно сумме делителей второго дружественного числа. Наименьшие из дружественных чисел 220 и 284 были известны еще пифагорейцам, которые считали их символом дружбы. Следующая пара дружественных чисел 17296 и 18416 была открыта французским юристом и математиком Пьером Ферма лишь в 1636 году, а последующие числа находили Декарт, Эйлер и Лежандр. Шестнадцатилетний итальянец Никколо Паганини (тезка знаменитого скрипача) в 1867 году потряс математический мир сообщением о том, что числа 1184 и 1210 дружественные! Эту пару, ближайшую к 220 и 284, проглядели все знаменитые математики, изучавшие дружественные числа.

Дружественные числа

Дружественные числа - два натуральных числа́, для которых сумма всех собственных делителей первого числа́ равна второму числу и сумма всех собственных делителей второго числа́ равна первому числу. Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе.

Ниже приведены пары дружественных чисел, меньших 130 000.

6. 10744 и 10856

7. 12285 и 14595

8. 17296 и 18416

9. 63020 и 76084

10. 66928 и 66992

11. 67095 и 71145

12. 69615 и 87633

13. 79750 и 88730

14. 100485 и 124155

15. 122265 и 139815

16. 122368 и 123152

Прах Диофанта гробница покоит: дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругой он обручился;

С нею пять лет проведя, сына дождался мудрец.

Только полжизни отцовской возлюбленный сын его прожил,

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

Сколько лет прожил Диофант?

Фигурные числа

Давным-давно, помогая себе при счете камушками, люди обращали внимание на правильные фигуры, которые можно выложить из камушков. Можно просто класть камушки в ряд: один, два, три. Если класть их в два ряда, чтобы получались прямоугольники, мы обнаружим, что получаются все четные числа. Можно выкладывать камни в три ряда: получатся числа, делящиеся на три. Всякое число, которое на что-нибудь делится, можно представить таким прямоугольником, и только простые числа не могут быть "прямоугольными". А что если складывать треугольник? Треугольник получается из трех камушков: два в нижнем ряду, один в верхнем, в ложбинке, образованной двумя нижними камнями. Если добавить камень в нижний ряд, появится еще одна ложбинка; заполнив ее, мы получим ложбинку, образованную двумя камушками второго ряда; положив в нее камень, мы наконец получим треугольник. Итак, нам пришлось добавить три камушка. Следующий треугольник получится, если добавить четыре камушка. Выходит, что на каждом шаге мы добавляем столько камней, сколько их становится в нижнем ряду. Если теперь считать, что один камень - это тоже треугольник, самый маленький, у нас получится такая последовательность чисел: 1, 1+2=3, 1+2+3=6, 1+2+3+4=10, 1+2+3+4+5=15 и т. д. Итак, фигурные числа - это общее название чисел, геометрическое представление которых связано с той или иной геометрической фигурой. Числа древними греками, а вместе с ними Пифагором и пифагорейцами мыслились зримо, в виде камешков, разложенных на песке или на счетной доске - абаке.

По этой причине греки не знали нуля, т. к. его невозможно было "увидеть". Но и единица еще не была полноправным числом, а представлялась как некий "числовой атом", из которого образовывались все числа Пифагорейцы называли единицу "границей между числом и частями", т. е. между целыми числами и дробями, но в то же время видели в ней "семя и вечный корень". Число же определялось как множество, составленное из единиц. Особое положение единицы как "числового атома", роднило ее с точкой, считавшейся "геометрическим атомом". Вот почему Аристотель писал: "Точка есть единица, имеющая положение, единица есть точка без положения". Т. о. пифагорейские числа в современной терминологии - это натуральные числа. Числа камешки раскладывались в виде правильных геометрических фигур, эти фигуры классифицировались. Так возникли числа, сегодня именуемые фигурными. Древние греки, когда им приходилось умножать числа, рисовали прямоугольники; результатом умножения трех на пять был прямоугольник со сторонами три и пять. Это - развитие счета на камушках. Множество закономерностей, возникающих при действиях с числами, были обнаружены древнегреческими учеными при изучений чертежей. И долгие века лучшим подтверждением справедливости таких соотношений считался способ геометрический, с прямоугольниками, квадратами, пирамидами и кубами. В V - IV веках до нашей эры ученые, комбинируя натуральные числа, составляли из них затейливые ряды, придавая элементам этих рядов то или иное геометрическое истолкование. С их помощью можно выложить правильные геометрические фигуры: треугольники, квадраты, пирамиды и т. д. Увлеклись, причем независимо друг от друга, нахождением таких чисел Б. Паскаль и П. Ферма.

Даже в XVII века, когда была уже хорошо развита алгебра с обозначениями величин буквами, со знаками действий, многие считали ее варварской наукой, пригодной для низменных целей- бытовых расчетов, вспомогательных вычислений, - но никак не для благородных научных трудов. Один из крупнейших математиков того времени, Бонавентура Кавальери, пользовался алгеброй, ибо вычислять с ее помощью проще, но для обоснования своих научных результатов все алгебраические выкладки заменял рассуждениями с геометрическими фигурами.

Среди фигурных чисел различают: Линейные числа (т. е. простые числа) - числа, которые делятся только на единицу и на самих себя и, следовательно, представимы в виде последовательности точек, выстроенных в линию: (линейное число 5)

Плоские числа - числа, представимые в виде произведения двух сомножителей: (плоское число 6)

Телесные числа, выражаемые произведением трех сомножителей: (телесное число 8)

Треугольные числа: (треугольные числа 3,6,10)

Квадратные числа: (квадратные числа 4,9,16)

Пятиугольные числа:(пятиугольные числа 5,12)

Именно от фигурных числе пошло выражение "Возвести число в квадрат или куб".

Представление чисел в виде правильных геометрических фигур помогало пифагорейцам находить различные числовые закономерности. Например, чтобы получить общее выражение для n-угольного числа, которое есть не что иное, как сумма n натуральных чисел 1+2+3+. +n, достаточно дополнить это число до прямоугольного числа n(n+1) и увидеть (именно глазами!) равенство

Написав последовательность квадратных чисел, опять-таки легко увидеть глазами выражение для суммы n нечетных чисел:

Наконец, разбивая n-е пятиугольное число на три (n-1) треугольных (после чего остается ещё n "камешков"), легко найти его общее выражение

Разбиением на треугольные числа получается и общая формула для n-го k-угольного числа:

При k=3 мы получаем треугольные числа, а k=4 - квадратные числа и т. д.

Аналогично можно представить число в виде прямоугольника. Для числа 12 это можно сделать многими способами (рис.), а для числа 13 - лишь расположив все предметы в одну линию. Такое древние не считали прямоугольным.

Таким образом, прямоугольными числами являются все составные числа, а не прямоугольными - простые числа. Фигурное представление чисел помогало пифагорейцам открывать законы арифметических операций, а также легко переходить к числовой характеристике геометрических объектов - измерению площадей и объемов.

Так, представляя число 10 в двух формах: 5*2=2*5, легко "увидеть" переместительный закон умножения: a*b=b*a. В том же числе 10: (2+3)*2=2*2+3*2=10 можно "разглядеть" и распределительный закон сложения относительно умножения: (a+b)c=ac+bc.

Наконец, если "камешки", образующие фигурные числа, мыслить в виде равных по площади квадратиков, то, укладывая их в прямоугольное число ab:. автоматически получаем формулу для вычисления площади прямоугольника: S=ab. К фигурным числам также относятся пирамидальные числа, которые получаются, если шарики складывать пирамидой, как раньше складывали ядра около пушки.

Нетрудно заметить, что пирамидальное число равно сумме всех треугольных чисел - от первого до n-го. Формула для вычисления n-го пирамидального числа имеет вид:

«Числовые забавы »

Это число, прежде всего, замечательно тем, что определяет число дней в не високосном году. При делении на 7 оно даёт в остатке 1, эта особенность числа 365 имеет большое значение для нашего семидневного календаря.

Существует ещё одна особенность числа 365:

365=10×10×11×11×12×12, то есть 365 равно в сумме квадратов трёх последовательных чисел, начиная с 10:

10²+11²+12²=100+121+144=365.

Но и это ещё не всё. Число 365 равно сумме квадратов двух следующих чисел, 13 и 14:

13²+14²=169+196=365.

Если человек не знает выше изложенных свойств числа 365, то он при решении примера:

10²+11²+12²+13²+14²

365 начнёт выполнять громоздкие вычисления.

Например:

10²+11²+12²+13²+14² ‗ 100+121+144+169+196 ‗ 221+313+196 ‗ 730

Человек же знающий решит этот пример в уме моментально и получит в ответе 2.

10²+11²+12²+13²+14² ‗ 365+365 ‗ 730

Следующее число, которое я буду описывать – это 999.

Оно намного удивительнее, чем его перевёрнутое изображение – 666 –«звериное число»

Апокалипсиса, вселяющее страх в суеверных людей, но оно по своим арифметическим свойствам ничем не выделяется среди других чисел.

Особенность числа 999 в том, что его можно легко умножить на трёхзначные числа. Тогда получится шестизначное произведение: первые три цифры его есть умножаемое число, уменьшенное на единицу, а остальные три цифры являются дополнениями первых трех до 9. Например,

Стоит лишь взглянуть на следующую строку, чтобы понять происхождение этой особенности:

573×999=573×(1000-1)= 573

Зная эту особенность, мы можем мгновенно умножить любое трёхзначное число на 999.

Например:

947×999=946053, 509×999=508491, 981×999=980019,

543×999=542457, 167×999=166833, 952×999=951048 и т. п.

А так как 999=9×111=3×3×3×37,то вы можете описать целые столбцы шестизначных чисел, кратных 37. Не знакомый же со свойствами числа 999, этого сделать не сможет.

1. Число 1001

Сначала рассмотрим число 1001. Это число сказок, которое царица Шехерезада рассказывала царю Шахрияру.

Число 1001 с первого взгляда кажется самым обыкновенным. Его можно разложить на три последовательных простых множителя 7, 11 и 13. Следовательно, оно является их произведением.

Но в том, что 1001=7×11×13 нет ничего интересного. Замечательно то, что если его умножить на любое трехзначное число, то в результате получится тоже самое число, записанное дважды. Нужно применить распределительный закон умножения.

Разложим 1001 на сумму 1000+1.

Например:

247×1001=247×(1000+1)=247×1000+247×1=247000+247=247247

Число 111111

Следующее число, о котором я хочу рассказать – это 111 111.

Благодаря знакомству со свойствами числа 1001 мы сразу видим, что

111 111=111×1001

Но мы знаем, что

111=3×37, 1001=7×11×13.

Отсюда следует, что наша новая числовая диковинка, состоящая из одних единиц, представляет собой произведение пяти простых множителей. Соединяя же эти 5 множителей в две группы на всевозможные лады, мы получаем 15 пар множителей, дающих в произведении одно и то же число, 111 111.

3×(7×11×13×37)=3×37037=111 111

7×(3×11×13×37)=7×15873=111 111

11×(3×7×13×37)=11×10101=111 111

13×(3×7×11×37)=13×8547=111 111

37×(3×7×11×13)=37×3003=111 111

(3×7)×(11×13×37)=21×5291=111 111

(3×11)×(7×13×37)=33×3367=111 111

(3×13)×(7×11×37)=39×2849=111 111

(3×37)×(7×13×11)=111×1001=111 111

(7×3)×(11×13×37)=21×5291=111 111

(7×11)×(3×13×37)=77×1443=111 111

(7×13)×(11×3×37)=91×1221=111 111

(7×37)×(11×3×13)=259×429=111 111

(11×13)×(7×37×3)=143×777=111 111

(37×11)×(13×7×3)=407×273=111 111

«Фокус с числом»

Арифметические фокусы – честные, добросовестные фокусы. Здесь никто никого не стремится обмануть, ввести транс или усыпить внимание зрителя. Чтобы выполнить такой фокус, не нужны, ни чудодейственная ловкость рук, ни изумительное проворство движений, ни какие – либо другие артистические способности, требующие иногда многолетних упражнений. Кружок товарищей, не посвящённых в математические тайны можно поразить следующими фокусами.

Фокус № 1.

Запишите число 365 два раза: 365 365.

Разделите полученное число на 5: 365 365÷5=73 0 73.

Разделите полученное частное на 73: 73 0 73÷73=1001.

У вас получится число Шехерезады, то есть 1001.

Разгадка фокуса, очень проста: число 365=5×73. То есть число 365365 мы делим на 365 и получаем в ответе 1001.

Фокус № 2.

Пусть кто-нибудь напишет любое трехзначное число, и затем к нему припишет еще раз это же самое число. Получится шестизначное число, состоящее из повторяющихся цифр.

Предложите своему товарищу разделить это число в тайне от вас на 7. Результат нужно передать соседу, который должен разделить его на 11. Полученный результат передается следующему ученику, которого вы просите разделить это число на 13.

Результат третьего деления вы, не глядя, вручаете первому товарищу. Это и есть задуманное число.

Этот фокус объясняется очень просто. Если приписать к трехзначному числу его само – значит умножить его на 1001, или на произведение 7×11×13=1001. Шестизначное число, которое ваш товарищ получит после того, как припишет к заданному числу его само, должно будет делиться без остатка и на 7, и на 11, и на 13.

Фокус № 3.

Запишите любую цифру три раза подряд. Полученное число разделите на 37 и на 3. И у вас получится в ответе ваша цифра.

Разгадка: когда мы делим трехзначное число, записанное тремя одинаковыми цифрами вначале на 37, а затем на 3,то мы, не замечая, делим на 111.

Фокус № 4.

Число 111 111 так же можно использовать для проделывания фокусов, как и число 1001. В данном случае надо предлагать товарищу число однозначное, и попросить записать его уже шесть раз подряд. Делителями здесь могут служить пять простых чисел: 3, 7, 11, 13, 37 и получающиеся из них составные: 21, 33, 39 и т. п. Это дает возможность очень разнообразить выполнение фокуса.

Например: предложите своим товарищам задумать любую цифру, кроме нуля. Нужно умножить ее на 37. Затем умножить на 3. Результат приписать еще раз справа. Полученное число разделить на первоначально задуманную цифру.

Получилось число 111 111.

Разгадка фокуса основана на свойстве числа 111 111. Когда мы умножаем его на 1001 (со свойствами числа 1001 мы познакомились в предыдущей главе) и получилось задуманное число, записанное в начале. Далее при делении на задуманное число явно получается шесть единиц.

Фокус № 5.

Пусть ваш товарищ запишет любое трехзначное число. Справа к нему нужно приписать три нуля. От шестизначного числа предложите отнять первоначальное трехзначное. Затем попросите товарища разделить на задуманное, полученный результат. Частное нужно разделить на 37.

Получилось число 27.

Секрет фокуса понять просто. Он основан на свойствах числа 999.

Число 999 является произведением четырех простых множителей:

3×3×3×37=999, а, следовательно, 999÷37=27

Когда умножают на него трехзначное число, получается результат, состоящий из двух половин: первая – это умножаемое число, уменьшенное на единицу, а вторая – результат вычитания первой половины из множителя.

Фокус № 6.

Число 111 111 111: можно также использовать для наших числовых фокусов:

Спросим у одноклассника его любимую цифру (от 1 до 9).

Попросим эту цифру умножить на 9, а затем полученное произведение умножить на число 123456789. В результате получится число, состоящее из любимых цифр одноклассника.

Например:

5 – это любимая цифра ученика, тогда

45×123456789=555 555 555 т. е. 9×123456789=111 111 111

Заключение

Я думаю, что моя работа является мини-пособием для изучения числового разнообразия. Интересные способы вычисления чисел очень могут помочь в школе, в вузе, на работе, и вообще в жизни. Так в кругу товарищей можно загадывать интересные арифметические фокусы без обманов и волшебства. Исходя из всего вышесказанного, я делаю вывод, что эти и многие другие числовые диковинки желательно знать каждому. Эти знания обязательно понадобятся в жизни!

Белоусова Арина

Выступление на Школьной научно-практической конференции об истории возникновения арабских цифр.

Скачать:

Предварительный просмотр:

Муниципальное автономное образовательное учреждение лицей №42

Октябрьского района городского округа город Уфа

Республики Башкортостан

Номинация: математика

Секция: математика

Тема работы:

История возникновения цифр

Работу выполнила:

Белоусова Арина Михайловна

Класс 2 Д

Руководитель

Нуруллина Татьяна Петровна Классный руководитель

Уфа 2013

Введение.

2. Как считали древние люди

3. Цифры у разных народов

4. Цифры нашего времени

5. Заключение

6. Приложения

7. Литература

Введение

С самого раннего возраста человек сталкивается с необходимостью считать. Однако, научившись считать, люди мало знают о том, откуда появились числа, кто придумал использовать ту или иную форму записи числа. Проведенный мною опрос показал, что некоторые обучающиеся нашего класса, а также наши родители не смогли дать ответ на вопрос: « Как и где возникли первые числа?». Встречаясь с цифрами на каждом шагу, мы настолько привыкли к их существованию, что вряд ли задумываемся, а откуда же они взялись. А, между прочим, история их возникновения чрезвычайно увлекательна. Поэтому я решила изучить историю возникновения чисел и представить полученный материал другим обучающимся, который можно так же использовать на уроках математики.

Цель: Узнать историю возникновения цифр

Задачи:

1.Изучить имеющуюся литературу по теме.

2.Определить, как появились цифры

3.Выяснить, как считали древние люди, которые не знали цифр.

4.Собрать информацию о цифрах других народов

В современных условиях очень важно каждому человеку правильно понимать законы чисел. Числа – являются необходимой частью математики. Отсюда-актуальность темы.

1. Из истории возникновения чисел

Учится считать, люди начали в незапамятные времена, а учителем у них была сама жизнь. Древние люди добывали себе пищу главным образом охотой. На крупного зверя – бизона или лося – приходилось охотиться всем племенем: в одиночку ведь с ним не справишься. Командовал облавой обычно самый старый и опытный охотник. Что бы добыча не ушла, ее надо было окружить, ну вот хотя бы так: пять человек справа, семь сзади, четыре слева. Тут уж без счета никак не обойдешься! И вождь первобытного племени справлялся с этой задачей. Даже в те времена, когда человек не знал таких слов, как «пять» или «семь». Он мог показать числа на пальцах рук.

2. Как считали древние люди

Сначала были…пальцы. Весьма универсальное, удобное и сподручное средство для счёта. Его используют и до сих пор, правда, лишь в том случае, если нужно показать небольшое, ограниченное одним десятком число (здесь учитываем лишь возможности рук, пальцы ног не в счёт).

Пальцы сыграли немаловажную роль в истории счета. Особенно когда люди начали обмениваться друг с другом предметами своего труда. Так, например, желая поменять, сделанное им копье с каменным наконечником на пять шкурок для одежды, человек клал на землю свою руку и показывал, что против каждого вальца его руки нужно положить шкуру. Одна пятерня означала 5, две – 10. Не удивительно, что очень быстро назрела потребность в других, более совершенных символах счёта. Когда рук не хватало, вход шли и ноги. Две руки и одна нога – 15, две руки и две ноги – 20.

3. Цифры у разных народов

На протяжении истории каждый народ писал числа, считал и вычислял с их помощью. У разных народов было свое, определенное написание чисел (см. приложение 1).

Первое подобие цифр возникло около пяти тысяч лет назад в Египте и Месопотамии и представляло собой засечки на дереве или камнях. Египетские жрецы использовали для письма папирус, а в Месопотамии для этих целей служила мягкая глина. Единица изображалась колом, десяток - как бы парой рук, сотня - свернутым пальмовым листом, тысяча - цветком лотоса, символом обилия, сто тысяч - лягушкой, так как лягушек было очень много во время разлива Нила (см. приложение 2).

Не всем для записи чисел понадобилось столько символов. Например, майя в первом тысячелетии нашей эры писали любое число, используя лишь три знака: точку, линию и эллипс (см. приложение 3). Точка означала единицу, линия имела значение пяти, а эллипс, находясь под любым из этих знаков, увеличивал его значение в двадцать раз. Подобная минимизация отнюдь не приводила к упрощению записи: для обозначения того или иного числа приходилось использовать длинные ряды символов.

Следующий этап в истории цифр принадлежит древним римлянам. Изобретенная ими система исчисления основана на использовании букв для отображения чисел (римские цифры). Но это было очень не удобно - записи длинные, умножение и деление в письменном виде производить было невозможно. Все действия надо производить в уме. Даже чтобы прочитать число, нужно устно складывать или вычитать потому, что каждая римския цифра означает всюду, где бы она ни стояла, одно и то же число (см. приложение 4).

4. Цифры нашего времени

Современные привычные для нас цифры имеют арабское происхождение. Хотя арабы в свою очередь заимствовали их у индусов, видоизменив их и приспособив к своему письму. Характер написания каждой из девяти арабских цифр хорошо прослеживается, если записать их в «угловатой» форме (см. приложение 5). Количество углов каждой цифры соответствует количеству, которое эта цифра обозначает. Привычные, нам формы цифр, более округлые. Это влияние скорописи: так цифры записывать быстрее и удобнее (см. приложение 6).

Десятичная система, которой широко пользуется в настоящее время во всем мире, более совершенна. Вместо палочек, взятых от одной до девяти, используют цифры 1, 2, 3, 4, 5, 6, 7, 8, 9. Для обозначения десятков, сотен и т.д. не нужны новые значки, так как те же цифры используют и для записи десятков, сотен и т.д. Одна и та же цифра имеет различные значения в зависимости от места (позиции), где она записана. Благодаря этому свойству современную систему счисления называют позиционной. Десятичная позиционная система счисления позволяет записывать сколь угодно большие натуральные числа.

Народы пришли к этой системе постепенно. Она зародилась в Индии в V веке. В IХ веке ею уже владели арабы, в Х она дошла до Испании, а в ХII веке появилась в других странах Европы, но широкое распространение получила в ХVI веке. Долгое время развитие позиционной системы счисления тормозилось отсутствием в ней числа и цифры нуль. Только после введения нуля система стала совершенной.

Сейчас мы постоянно пользуемся числами. Используем их, чтобы измерять время, покупать и продавать, звонить по телефону, смотреть телевизор, водить автомобиль. К тому же у каждого человека есть различные числа, идентифицирующие лично его. Например, в удостоверении личности, в банковском счете, в кредитной карточке и т.д. Более того, в компьютерном мире вся информация, и этот текст в том числе, передается посредством числовых кодов.

Мы встречаемся с числами на каждом шагу и настолько к ним привыкли, что почти не отдаем себе отчета, насколько важную роль они играют в нашей жизни. Числа составляют часть человеческого мышления.

5. Заключение

В ходе выполнения данной работы, мною были прочитаны, рассмотрены книги и сайты об истории чисел и цифр. Я узнала как люди научились считать, как появились цифры которые мы используем в нашей жизни.

Изученный материал я обобщила и предоставила своим одноклассникам.

6. Приложения

Все мы знаем цифры от 0 до 9. А как же они появились? Откуда взялись эти привычные 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, которые мы постоянно используем в повседневной жизни? Как они называются и почему у них такое название? Окунемся в историю и узнаем ответы на эти и многие другие вопросы.

История возникновения цифр

Еще в древние времена человеку нужен был счет. Даже тогда, когда еще не было букв и цифр, когда древний человек не знал, что такое два или пять, ему нужно было выполнять нехитрые действия по разделу добычи, определению количества человек для охоты и многие другие.

Изначально он пользовался своими руками, а иногда даже ногами, показывал на пальцах. Помните поговорку «Знаю как свои 5 пальцев»? Вполне возможно, что она была придумана в те далекие времена. Именно пальцы были первыми инструментами для счета.

Жизнь текла своим чередом, все менялось, людям нужны были какие-то еще знаки, кроме пальцев. Числа становились все больше, трудно было удерживать их в голове, следовало как-то их обозначить и записать. Так появились цифры. Причем разные страны придумывали свои. Первыми были египтяне, потом греки и римляне. Сейчас мы иногда пользуемся римскими цифрами. Однако самыми популярными и используемыми нами по сей день являются цифры, изобретенные в Индии еще до начала V века.

Почему они так называются

Почему же привычные цифры называются арабскими, ведь они были придуманы в Индии? А все потому, что распространение они получили именно благодаря арабским странам, которые их начали активно использовать. Арабы взяли индийские цифры, немного их поменяли и начали активно использовать. Среди тех, кто помогал миру открыть хорошо знакомые нам арабские цифры, был француз Александр де Виллие, британский учитель Джон Галифакс и знаменитый математик Фибоначчи, которые часто путешествовали на Восток и изучали труды арабских ученых.

Само слово «цифра» арабского происхождения. Созвучное арабское слово «сифр» обозначает те значки, которые мы привыкли использовать 0,1, 2…9.

Познакомимся с цифрами ближе

Цифра 1

Отгадайте-ка загадку:

С хитрым носиком сестрица
Счёт откроет …(единица )

Правильно, это цифра 1. Самая первая цифра. Ее легко написать. Именно с нее всегда начинается знакомство с цифрами. Из единиц можно составить любое число, например 1+1=2 и т.д. В Китае единица – это начало всего. Впрочем, и у нас также. Начало учебного года – 1 сентября, а новый год – 1 января.

Цифра 1 символизирует начало, единство, целостность, как Бог, солнце, вселенная, космос. Это неделимое и уникальное число.

Цифра 2

Следующая загадка:

Шея, хвост и голова,
Словно лебедь цифра…(два )

Цифра 2. Посмотрите на нее внимательно. Она действительно похожа на лебедя. В некоторых странах двойка считается символом противоположности, а в некоторых, наоборот, символом парности. А еще целостности. Миллионы творение без пары — не являются целым... Например, два крыла, два глаза, два уха и другие части тела. Любая семья начинается с двоих...

Часто цифра два встречается в литературе. Вспомните басни Крылова «Два голубя», «Две собаки» или сказку братьев Гримм «Два брата», сказку Носова «Два Мороза». Двойка – самое маленькое простое число. А также самая плохая оценка в школе. Чтобы не получать двойки, нужно хорошо учиться.

Цифра 3

Отгадаем еще одну загадку:

Что за чудо,
Что за цифра!
Знает каждый сорванец.
Даже в нашем алфавите
У неё сестра – близнец…(три )

Цифра 3. Наверное, вы заметили, что цифра три очень часто встречается во многих сказках: «Было у отца три сына», «ехал три дня и три ночи», «три раза плюнуть», «три раза постучать по дереву», «три раза хлопнуть в ладоши», «три раза повернуться вокруг своей оси», «три раза что-то произнести», «три богатыря», «три желания» и т.д. Считается, что число «три» священное. Цифра и правда похоже на буквы русского алфавита «З».

Цифра 4

Я после цифры 3 стою,
А цифре пять немного уступаю.
Что же я за цифра такая?

Цифра 4. Говорят, что четверка самая магическая из цифр. В большинстве государств она является символом целостности. А вот в азиатских странах относятся к ней с опасением. В жизни мы встречаемся с числом 4 очень часто: 4 времени года, 4 стороны света, 4 природных стихии, 4 времени суток и т.д.

Цифра 5

Сколько пальцев на руке
И копеек в пятачке,
У морской звезды лучей,
Клювов у пяти грачей,
Лопастей у листьев клена
И углов у бастиона,
Про все это рассказать
Нам поможет цифра… (пять)

Цифра 5. В большинстве школ – это лучшая оценка! Хотя, к примеру, в Германии пятерку ставят наоборот тем, кто плохо старается. Где мы можем встретить пятерку? Например, на Земле 5 континентов, а у символа Олимпийских игр 5 колец, а на руках и на ногах по 5 пальцев.

Цифра 6

Сколько букв есть у дракона
И нулей у миллиона,
Разных шахматных фигур,
Крыльев у трех белых кур,
Ног у майского жука
И сторон у сундука.
Коль не можем сами счесть,
Нам подскажет цифра…(шесть)

Цифра 6. Самая хитрая цифра. Если на голову встанет, цифра 6 девяткой станет. У кубика 6 граней, у всех насекомых 6 ног, многие музыкальные инструменты имеют по 6 отверстий – вот примеры того, где встречается в жизни цифра 6.

Цифра 7

Сколько в яркой радуге цветов?
Сколько на земле есть чудес света?
Сколько у Москвы всего холмов?
Нам цифра эта так подходит для ответа!

Цифра 7. Проста в написании, напоминает топор или знак вопроса. Пожалуй, все знаю, что эта цифра считается самой удачливой. В каждой неделе 7 дней, в музыке 7 нот, а у радуги 7 цветов, мировая цивилизация насчитывает 7 чудес света. Как вы видите, цифра 7 встречается в жизни тоже очень часто.

А еще цифра 7 любима народными поверьями и любит жить в сказках. Ну, кто не знает такие любимые сказки, как «Волк и семеро козлят», «Цветик-семицветик», «Белоснежка и семь гномов», «Сказка о царевне и семи богатырях».

Самое желанное слово на свете также содержит в себе цифру 7 — Семья.

Цифра 8

Это ж надо! Цифру носим
На носу, взгляните, просим.
Цифра эта плюс крючки -
Получаются очки…

Цифра 8. Цифра 8 – перевернутый знак бесконечности. У многих народов эта цифра особенная. Например, в Китае она означает процветание и богатство. Известный математик Пифагор также считал, что цифра 8 – гармония, равновесие и достаток. Помните ли вы, какой праздник мы празднуем 8 марта? А сколько копыт у двух коров? Сколько ног у паука?

Цифра 9

Шёл котёнок через мост,
Сел на мост и свесил хвост.
«Мяу! Так удобней мне ведь…»
Стал котёнок цифрой …!

Цифра 9. Помните, мы недавно изучали цифру 6? Правда ведь цифра 9 на нее похожа? Это последняя цифра в ряду.

Цифра 0

Встали цифры, как отряд,
В дружный числовой свой ряд.
Первой по порядку роль
Нам сыграет цифра…

Цифра 0. Это единственная цифра, на которую нельзя делить. Число ноль не является ни положительным, ни отрицательным. Первым цифру начал использовать средневековый персидский ученый Аль-Хорезми.

Мы уже выяснили, что история цифр и чисел стара как мир. За все время существования, цифры и числа обросли самыми различными мифами и легендами. С ними связано множество интересных фактов. Самые интересные из них представлены ниже.

  1. В переводе с арабского слово «цифра» значит «пустота, ноль». Согласитесь, это весьма символично.
  2. Можно ли записать ноль римскими цифрами? А вот и нет. Нельзя записать римскими цифрами «ноль», он не существует в природе. Отсчет у римлян начинается с единицы.
  3. Самое большое число на данный момент – центильон. Оно представляет собой единицу аж с 600 нулями. Впервые оно было записано на бумаге в далеком 1852 году.
  4. С чем у вас ассоциируется число 666? А вы знали, что это сумма всех чисел на рулетке в казино?
  5. Во всем мире считается, что 13 – несчастливое число. Во многих странах пропускают этаж под номером «13» и за двенадцатым идет четырнадцатый или, к примеру, 12А. А вот в азиатских странах (Китае, Японии, Корее) несчастливое число – 4, поэтому этаж также пропускается. В Италии еще одно нелюбимое почему-то число – 17.
  6. Напротив, самым счастливым и удачным числом принято считать 7.
  7. Сами арабы записывают числа справа налево, а не как это привыкли делать мы слева направо.
  8. Интересна теория одного математика, что числовое значение напрямую связано с количество углов в написании цифры. Действительно, ранее цифры писались угловато, свои округлые привычные начертания они приобрели со временем.

Практическая работа

Математика и математический анализ

В современном мире человек постоянно пользуется числами, даже не задумываясь об их происхождении. Без знания прошлого нельзя понять настоящее. Поэтому целью данной работы является исследование истории возникновения чисел, связанной с необходимостью выражения всех чисел знаками.

PAGE 11

МОУ «Волчихинская средняя школа №2»

Алтайского края

Исследовательская работа

ВОЗНИКНОВЕНИЕ ЧИСЕЛ

Выполнила:

Потехина Анастасия

с. Волчиха

МОУ «ВСШ №2», 9 «А» класс

Руководитель:

Потапенко Светлана Владимировна

учитель математики МОУ «ВСШ №2»

второй квалификационной категории

Волчиха

2011

  1. Введение…………………………………………………………………………. 3

2. Научно-исследовательская часть………………………………….……...…… 5

  1. Возникновение слова «математика»………………………………………. 5
  2. Счет у первобытных людей……………………………………...………… 5
  3. Цифры у разных народов…………………………………………….…….. 6

3.1. Появление цифр………………………………………………..…….. 6

3.2. Римская нумерация………………………………………..……...… 11

3.3. Цифры русского народа……………………………………….…. ...11

4) Мир больших чисел……………………………………………...………… 12

3. Заключение…………………………………………………………………...… .14

4. Список использованной литературы……..…….………………....………...…. 17

ВВЕДЕНИЕ

Кто хочет ограничиться настоящим,

без знания прошлого,

тот никогда его не поймет…

Г.В.Лейбниц

В современном мире человек постоянно пользуется числами, даже не задумываясь об их происхождении. Без знания прошлого нельзя понять настоящее. Поэтому целью данной работы является исследование истории возникновения чисел, связанной с необходимостью выражения всех чисел знаками. Было решено исследовать историю возникновения чисел на примере натуральных чисел.

Первым этапом научно-исследовательской работы было определение возникновения слова «математика». После изучения литературы стало известно, что это слово возникло в Древней Греции в V веке до нашей эры.

Вторым этапом данной работы было изучение приемов счета у первобытных людей. Отмечено, что при счете использовались узелки, камешки, палочки. Все эти способы были не удобны, что привело к появлению условных знаков.

На третьем этапе исследования рассмотрены условные знаки – цифры разных народов. Отмечено, что у разных народов были свои изображения, но постепенно шло превращение первоначальных цифр в наши современные цифры. Отдельное место занимает римская нумерация, основанная на принципах сложения и вычитания.

Также рассмотрено появление цифр у русского народа. Отмечено, что наши предки сначала использовали славянскую нумерацию (цифры обозначали буквами) и только с XVIII века стали использовать арабские числа.

Для решения поставленных задач были использованы следующие методы:

  1. Исследовательский;
  2. Интервьюирование;
  3. Компьютерная обработка данных;
  4. Математический.

При исследовании истории возникновения чисел была установлена зависимость между возникновением чисел и необходимостью выражения всех чисел знаками. Эта зависимость повлияла на появление знаков-цифр, которые заменили другие не совсем удобные способы обозначения чисел.

Числа – это выражение определенного количества чего-либо. В течение тысячелетий люди использовали пальцы рук и ног, но это было не очень удобно при обозначении большого количества. Возникла необходимость более удобного способа выражения количества. Таким способом является запись чисел при помощи специальных знаков – цифр.

Тема «История возникновения чисел» актуальна в современном мире, и очень важна для нашего развития, так как в настоящее время наше общество постоянно пользуется числами.

Материал данной работы можно рекомендовать к использованию на уроках математики или на занятиях школьного математического кружка в качестве дополнительного материала с целью появления заинтересованности к учебному предмету и пробуждения желания к изучению математики у учеников, а также для расширения их кругозора.

НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ

  1. Возникновение слова «математика»

Слово «математика» возникло в Древней Греции примерно в V веке до нашей эры. Происходит оно от слова «матема» - «учение», «знания, полученные через размышления» (3, стр. 10).

Древние греки знали четыре «матемы»:

  1. учение о числах (арифметика);
  2. теорию музыки (гармонию);
  3. учение о фигурах и измерениях (геометрию);
  4. астрономию и астрологию.

В древнегреческой науке существовало два направления. Представители первого из них, возглавляемые Пифагором, считали знания предназначенными только для посвященных. Никто не имел права делиться своими открытиями с посторонними. Представители второго направления, напротив, считали, что математика доступна всем, кто способен к продуктивным размышлениям. Они называли себя математиками. Победило второе направление.

  1. Счет у первобытных людей

Считать люди научились еще в незапамятные времена. Сначала они различали просто один или много предметов. Прошли сотни лет, прежде чем появилось число 2. Счет парами оказался очень удобен, и не случайно у некоторых племен Австралии и Полинезии до последнего времени были только два числительных: один и два, а все числа больше двух получали название в виде сочетания этих двух числительных. Например, три - «один, два»; четыре - «два, два»; пять - «два, два, один». Позже появились особые названия для чисел. Сначала для небольших чисел, а потом для все больших и больших. Число - одно из основных понятий математики, позволяющее выразить результаты счета или измерения. Пальцы всегда при нас, то и считать стали по пальцам. Таким образом, наиболее древней и простой «счетной машиной» издавна являются пальцы рук и ног (3, стр. 13).

Запоминать большие числа было трудно, и поэтому кроме пальцев рук и ног «задействовались» другие «приспособления». Например, перуанцы использовали для этого разноцветные шнурки с завязанными на них узлами. Веревочные счеты с узелками были в ходу в России, а также во многих странах Европы. До сих пор иногда завязывают узелки на носовых платках на память.

Засечки на палочках применяли в торговых сделках. Палочки после окончания расчетов разламывали пополам, одну половинку брал кредитор, а другую - должник. Половинка играла роль «квитанции». В деревнях использовали счеты в виде зарубок на палках.

На более высокой стадии развития люди при счете стали применять разные предметы: использовали камешки, зерна, веревку с бирками. Это были первые счетные приборы, которые, в конце концов, привели к образованию разных систем счисления и к созданию современных быстродействующих электронных вычислительных машин.

  1. Цифры у разных народов

Мысль выражать все числа знаками

настолько проста, что именно из-за

этой простоты сложно осознать,

сколь она удивительна.

Пьер Симон Лаплас (1749-1827), франц. астроном, математик, физик.

Цифры - условные знаки для обозначения чисел. Первыми записями чисел можно считать зарубки на деревянных бирках или костях, а позднее - черточки. Но большие числа изображать, таким образом, неудобно, поэтому стали применять особые знаки (цифры).

  1. Появление цифр

Ещё недавно существовали племена, в языке которых были названия только двух чисел: «один» и «два». Туземцы островов, расположенных в Торресовом проливе, знали два числа: «урапун» - один, «окоза» - два и умели считать до шести. Островитяне считали так: «окоза-урапун» - три, «окоза-окоза» - четыре, «окоза-окоза-урапун» - пять, «окоза-окоза-окоза» - шесть. О числах, начиная с 7, туземцы говорили «много», «множество». Наши предки, наверняка, тоже начинали с этого. В старинных пословицах и поговорках как, например, «Семеро одного не ждут», «Семь бед – один ответ», «У семи нянек дитя без глазу», «Один с сошкой, семеро с ложкой» 7 тоже означало «много».

В древние времена, когда человек хотел показать, сколькими животными он владел, он клал в большой мешок столько камешков, сколько у него было животных. Чем больше животных, тем больше камешков. Отсюда и произошло слово «калькулятор», «калькулюс» на латинском языке означает «камень» (3, стр. 17).

Сначала считали на пальцах. Когда пальцы на одной руке кончались, переходили на другую, а если на двух руках не хватало, переходили на ноги. Поэтому, если в те времена кто-то хвалился, что у него «две руки и одна нога кур», это означало, что у него пятнадцать кур, а если это называлось «весь человек», то есть две руки и две ноги, то это означало двадцать.

Перуанские инки вели счет животных и урожая, завязывая узелки на ремешках или шнурках разной длины и цвета (Рис. 1). Эти узелки назывались кипу. У некоторых богатеев скапливалось по несколько метров этой веревочной «счетной книги», попробуй, вспомни через год, что означают 4 узелочка на шнурочке! Поэтому того, кто завязывал узелки, называли вспоминателем.

Рис. 1.

Первыми придумали запись чисел древние шумеры. Они пользовались всего двумя цифрами. Вертикальная чёрточка обозначала одну единицу, а угол из двух лежачих чёрточек – десять. Эти чёрточки у них получались в виде клиньев, потому что они писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали. Вот так выглядели эти дощечки (Рис. 2).

Рис.2.

После счета по зарубкам люди изобрели особые символы, названные цифрами. Они стали применяться для обозначения различных количеств каких-либо предметов. Разные цивилизации создавали свои собственные цифры (4, стр. 12).

Так, например, в древней египетской нумерации, зародившейся более 5000 лет назад, существовали особые знаки (иероглифы) для записи чисел 1, 10, 100, 1000, …: (Рис. 3).

Рис. 3.

Для того чтобы изобразить, например, целое число 23145, достаточно записать в ряд два иероглифа, изображающие десять тысяч, затем три иероглифа для тысячи, один – для ста, четыре – для десяти и пять иероглифов для единицы: (Рис.4).

Рис. 4.

Этого одного примера достаточно, чтобы научиться записывать числа так, как их изображали древние египтяне. Это система очень проста и примитивна.

Похожим образом обозначали числа на острове Крит, расположенном в Средиземном море. В критской письменности единицы обозначались вертикальной чёрточкой |, десятки – горизонтальной - , сотни – кружком ◦, тысячи – знаком ¤.

Народы (вавилоняне, ассирийцы, шумеры), жившие в Междуречье Тигра и Евфрата в период от II тысячелетия до н.э. до начала нашей эры, сначала обозначали числа с помощью кругов и полукругов различной величины, но затем стали использовать только два клинописных знака – прямой клин (1) и лежащий клин (10). Эти народы использовали шестидесятеричную систему счисления, например число 23 изображали так:    Число 60 снова обозначалось знаком , например число 92 записывали так:  (4, стр. 17).

В начале нашей эры индейцы племени майя, которые жили на полуострове Юкатан в Центральной Америке, пользовались другой системой счисления – двадцатеричной. Они обозначали 1 точкой, а 5 – горизонтальной чертой. В системе счисления майя был и знак для нуля. По своей форме он напоминал полузакрытый глаз.

В Древней Греции сначала числа 5, 10, 100, 1000, 10000 обозначали буквами Г, Н, Х, М, а число 1 – черточкой /. Из этих знаков составляли обозначения    Г (35) и т.д. Позднее числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000 стали обозначать буквами греческого алфавита, к которому пришлось добавить еще три устаревшие буквы. Чтобы отличить цифры от букв, над буквами ставили черточку.

Древние индийцы изобрели для каждой цифры свой знак. Вот как они выглядели (Рис.5) (4, стр. 18).

Рис. 5.

Однако Индия была оторвана от других стран, - на пути лежали тысячи километров расстояния и высокие горы. Арабы были первыми «чужими», которые заимствовали цифры у индийцев и привезли их в Европу. Чуть позже арабы упростили эти значки, они стали выглядеть вот так (Рис.6).

Рис. 6.

Они похожи на многие наши цифры. Слово «цифра» тоже досталось нам от арабов по наследству. Арабы нуль, или «пусто», называли «сифра». С тех пор и появилось слово «цифра». Правда, сейчас цифрами называются все десять значков для записи чисел, которыми мы пользуемся: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Постепенное превращение первоначальных цифр в наши современные цифры.

  1. Римская нумерация

В основе римской нумерации использованы принципы сложения (например, VI = V + I ) и вычитания (например, IX = X -1). Римская система нумерации десятичная, но непозиционная. Римские цифры произошли не от букв. Первоначально они обозначались, как и у многих народов, «палочками» (I - один, X - 10 - перечеркнутая палочка, V - 5 - половина от десяти, сто - кружочек с черточкой внутри, пятьдесят — половина этого знака и т. д.).

Со временем некоторые знаки изменились: С - сто, L - пятьдесят, М - тысяча, D - пятьсот. Например: XL - 40, LXXX - 80, ХС - 90, CDLIX - 459, CCCLXXXII - 382, CMXCI - 991, MCMXCVIII - 1998, MMI – 2001 (4, стр. 13).

3.3. Цифры русского народа

Арабские числа в России стали применять, в основном, с XVIII века. До того наши предки использовали славянскую нумерацию. Над буквами ставились титлы (черточки), и тогда буквы обозначали числа (4, стр. 15).

В одной из русских рукописей XVIII века написано: «... Знай же то, что есть сто и что есть тысяща, и что есть тма, и что есть легион, и что есть леодр...; ... сто есть десятью десять, а тысяща есть десять сот, а тма десять тысящ, а легион есть десять тем, а леодр есть десять легионов...» (4, стр. 15).

Первые девять чисел записывались так:

Сотни миллионов назывались «колодами».

«Колода» имела специальное обозначение: над буквой и под буквой ставили квадратные скобки. Например, число 108 записывалось в виде

Числа от 11 до 19 обозначались так:

Остальные числа записывались буквами слева направо, например, числа 5044 или 1135 имели соответственно обозначение

В приведенной системе обозначения чисел не шли дальше тысяч миллионов. Такой счет назывался «малый счет». В некоторых рукописях авторами рассматривался и «великий счет», доходивший до числа 10 50 . Далее говорилось: «И более сего несть человеческому уму разумети» (4, стр. 15).

  1. Мир больших чисел

Сколько километров проходит человек за свою жизнь, сколько товаров производится и приходит в негодность ежечасно в пределах города, страны? Сколько времени заняло бы выполнение самым быстрым расчетчиком миллиона вычислительных операций, которые современная вычислительная машина выполняет за... секунду? Во сколько раз скорость пассажирского реактивного самолета превосходит скорость тренированного спортсмена-пешехода? Ответы на эти и тысячи подобных вопросов выражаются числами, занимающими зачастую по числу своих десятичных разрядов целую строку и даже больше.

Для сокращения записи больших чисел давно используется система величин, в которой каждая из последующих в тысячу раз больше предыдущей:

1000 единиц - просто тысяча (1000 или 1 тыс.)

1000 тысяч - 1 миллион (1 млн.)

1000 миллионов - 1 биллион (или миллиард, 1 млрд.)

1000 биллионов - 1 триллион

1000 триллионов - 1 квадриллион

1000 квадриллионов - 1 квинтиллион

1000 квинтиллионов - 1 секстиллион

1000 секстиллионов- 1 септиллион

1000 нониллионов- 1 дециллион

и т. д. (4, стр. 127).

Таким образом, 1 дециллион запишется в десятичной системе единицей с 3 х 11=33 нулями:

1 000 000 000 000 000 000 000 000 000 000 000.

Как писал Самуил Яковлевич Маршак: «Напрасно думают, что ноль играет маленькую роль».

При записи больших чисел часто используют степень числа 10.

Заметьте, что число нулей степени 10 всегда равно ее показателю:

10 1 = 10, 10 2 = 100, 10 3 = 1000 и т.д.

И еще одно: математики во всем мире давно приняли, что любое число в нулевой степени равно единице (а 0 = 1) (4, стр. 127).

Таким образом,

единица - 10° =1

тысяча -10 3 =1 000

миллион -10 6 =1 000 000

биллион - 10 9 = 1 000 000 000

триллион - 10 12 = 1 000 000 000 000

квадриллион - 10 15 = 1 000 000 000 000 000

квинтиллион - 10 18 = 1 000 000 000 000 000 000

секстиллион - 10 21 = 1 000 000 000 000 000 000 000

септиллион - 10 24 =1 000 000 000 000 000 000 000 000

октиллион - 10 27 = 1 000 000 000 000 000 000 000 000 000

Дециллион - 10 33 = 1 000 000 000 000 000 000 000 000 000 000 000

Заключение

Интересно отметить, что слово ЧИСЛО в обратную сторону прочитывается как сочетание двух отдельных слов – [Ол] и [Сич], которые созвучны двум английским словам «All» [всё] и «Search» [искомое]. Поэтому данное сочетание русифицированных слов английского языка «Ол Сич» в рамках моего исследования можно воспринимать в виде нового смыслового понятия, например - «всё искомое», и его следует понимать как «буквально всё».

При проведении исследовательской работы мне было интересно выяснить сколько потребуется отдельных слов - количественных имён числительных, являющихся «простыми» названиями чисел для того, чтобы записать прописью все числа от 1 до 999. Оказывается, потребуется всего 36 отдельных слов. Данная категория слов, составляющих базовую основу системы записи чисел прописью, традиционно подразделяется на три типа: простые непроизводные слова, простые производные и сложные производные. Но в рамках метода все они сведены к одной категории количественных имён числительных - «простых» (однословных) названий чисел.

Один

Одиннадцать

Десять

Сто

Два

Двенадцать

Двадцать

Двести

Три

Тринадцать

Тридцать

Триста

Четыре

Четырнадцать

Сорок

Четыреста

Пять

Пятнадцать

Пятьдесят

Пятьсот

Шесть

Шестнадцать

Шестьдесят

Шестьсот

Семь

Семнадцать

Семьдесят

Семьсот

Восемь

Восемнадцать

Восемьдесят

Восемьсот

Девять

Девятнадцать

Девяносто

Девятьсот

Если по аналогии с буквенным Алфавитом ввести понятие «Цифровой Алфавит», то его базовую основу составят десять исходных (одиночных) знаков-символов: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Их можно называть «простыми» цифровыми изображениями чисел. В системе письма они обозначают всего 9 чисел - от 1 до 9. Цифровой символ «0» используется в системе письма для отображения отсутствия числа. Для обозначения всех остальных чисел, превышающих число 9, необходимо использовать сочетание исходных символов, которые по отношению к «простым» изображениям чисел, являются «составными».

Мной было проведено интервьюирование. Был задан вопрос «Какое самое большое число Вы знаете?». С этим вопросом я обратилась к одноклассникам, ученикам других классов, учителям и знакомым. Результаты интервью были обработаны и представлены в виде диаграммы. Из которой видно, что 40 % опрошенных знают самое большое число триллион, 25 %– миллиард, 20% - миллион, 10% знакомы с квадриллионом и 5% с секстиллионом. Эти данные представлены в виде диаграммы (см. приложение 1). А о таких числах как септиллион, октиллион и дециллион многие даже никогда и не слышали.

По окончанию работы можно сделать следующие выводы:

  1. Слово математика возникло в Древней Греции в V веке до нашей эры.
  2. Считать люди научились в незапамятные времена.
  3. Сначала для счета использовали пальцы рук и ног.
  4. На более высокой стадии развития люди при счете стали применять разные предметы: камешки, зерна, веревку с бирками.
  5. Необходимость обозначения чисел привело к образованию специальных знаков-цифр.
  6. Запись больших чисел также осуществляется с помощью цифр.
  7. Существуют различные теории о происхождении чисел.

Приложение 1

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. Большая математическая энциклопедия / Якушева Г.М. и др. – М.: Филол. О-во «СЛОВО»: ОЛМА-ПРЕСС, 2005. – 639 с.: ил.
  2. Возникновение и развитие математической науки: Кн. Для учителя. – М.: Просвещение, 1987. – 159 с.: ил.
  3. Шейнина О. С., Соловьева Г. М. Математика/О. С. Шейнина, Г. М. Соловьева – М.: Изд-во НЦ ЭНАС, 2007. – 208с.
  4. Энциклопедия для детей. Т.11.Математика / Глав. ред, М.Д.Аксёнова. – М.: Аванта+,1998. – 688 с.: ил.
  5. Энциклопедия. Мудрость тысячелетий. – М.: ОЛМА-ПРЕСС, 2004. –

А также другие работы, которые могут Вас заинтересовать

1521. Проблема человека в конфуцианстве. Человек и природа в чань-буддизме 157 KB
Место человека в конфуцианстве. Низкий человек и благородный муж. Толкование человеческой природы Мэн-цзы и Сунь-цзы. Современное конфуцианство Чэнь Юланя. Учение о человеке в Чань-буддизме.
1522. Патриархально-патерналистская концепция государства Конфуция 32.92 KB
Социально-политические представления древневосточных обществ. Конфуцианское решение проблемы. Самая краткая формулировка учения Конфуция. Изначальное значение понятия порядок (ли) как нормы конкретных отношений, действий, прав и обязанностей в эпоху династии Западных Чжоу.
1523. Теория программирования на языке Oracle 164 KB
Архитектура Oracle. База данных. Физические и логические сегменты. Создание базы данных Oracle. Управляющие файлы. Создание, удаление и перемещение (переименование) управляющих файлов. Файлы данных. Создание, перемещение (переименование) файлов данных. Изменение состояния файлов данных. Использование CPU для нужд Oracle.
1524. Инновационный проект по разработке модели термопластавтомата 196.23 KB
Характеристика инновационного проекта по разработке модели термопластавтомата на предприятии ООО Имид. Назначение и техническое описание инновационного проекта. Оценка эффективности инновационного проекта. Расчет затрат на электроэнергию по проекту. Анализ показателей эффективности инновационного проекта. Анализ чувствительности проекта и оценка рисков.
1525. Расчет экономических показателей деятельности предприятия 130.41 KB
Расчет показателей динамики и состояния основных производственных фондов. Анализ влияния факторов на прирост объема произведенной продукции. Оценка влияния отдельных факторов на изменение прибыли от реализации продукции. Оценка влияния отдельных факторов на рентабельность производства.
1526. Аппарат для непрерывного преобразования значения гидростатического давления 76.5 KB
Использование ЖКИ в диапазонах температуры окружающего воздуха. Шифр преобразователя, код модели, максимальный верхний предел измерений, ряд верхних пределов измерений, пределы допускаемых основных приведенных погрешностей преобразователей. Поверку АИР-20/М2 проводят органы Государственной метрологической службы.
1527. Финансовый и налоговый контроль 187 KB
Понятие финансов, финансовой системы и финансовой деятельности государства и муниципальных образований. Компетенция государственных и муниципальных органов в области финансового контроля: представительных органов, исполнительных органов власти. Компетенция Счетная Палата РФ в сфере финансового контроля. Участники отношений, регулируемых законодательством о налогах и сборах.
1528. Расчет материальных затрат предприятия 67.99 KB
Расчет расходов по освоению изделия и на специальную технологическую оснастку. Расчет заводской себестоимости и полной себестоимости агрегата. Структура основных материалов в черном весе турбоагрегата. Расчет стоимости реализуемых отходов.
1529. Логіка і методологія 166.5 KB
РОБИТЬСЯ СПРОБА РОЗГЛЯНУТИ ПИТАННЯ, ЧИ ЛОГІКА Є МИСТЕЦТВОМ, ШЛЯХОМ ВИЗНАЧЕННЯ Й ПОДІЛУ МИСТЕЦТВА ВЗАГАЛІ. СТВЕРДЖУЄТЬСЯ, ЩО ЛОГІКА Є МИСТЕЦТВО, І ВІДКИДАЄТЬСЯ ТЕ, ЩО ЗАПЕРЕЧУЄ ЦЮ ДУМКУ. ПИТАННЮ, ЧИ ГІДНА ЛОГІКА НАЗИВАТИСЬ НАУКОЮ, ПЕРЕДУЄ РОЗВІДКА ПРО ВИЗНАЧЕННЯ І ПОДІЛ НАУКИ ВЗАГАЛІ. ВСТАНОВЛЮЄТЬСЯ, ЩО ЛОГІКА Є НАУКОЮ У ПРЯМОМУ РОЗУМІННІ СЛОВА, Й ВІДКИДАЮТЬСЯ АРГУМЕНТИ ПРОТИВНИКІВ У ЦЬОМУ ПИТАННІ.


Понравилась статья? Поделиться с друзьями: