Редкое заболевание хорея или пляска святого витта. Хорея или пляска святого вита

В состав зрительного анализатора входит рецепторный орган – глаз, проводящие пути – зрительный нерв, центры в затылочной зоне коры головного мозга. С помощью зрения человек получает более 90% информации об окружающем мире.

Глаз состоит из глазного яблока и вспомогательного аппарата (веки, ресницы, слезные железы). Глазное яблоко имеет три оболочки:

наружная – белочная, с прозрачной роговицей спереди,
сосудистая, с отверстием, область вокруг зрачка окрашена – радужка,
сетчатка, содержащая палочки и колбочки.
За радужкой находится хрусталик, способный изменять кривизну, обеспечивая фокусировку лучей света на сетчатке. Внутренняя часть глазного яблока заполнена стекловидным телом.

К распространенным нарушениям зрения относятся близорукость, когда фокусировка лучей происходит перед сетчаткой, и дальнозоркость, когда фокусировка за сетчаткой. Близорукость может быть врожденной или развиться при чтении в темноте, с близкого расстояния. Для предупреждения близорукости нужно хорошее освещение при чтении, чтобы свет при письме падал слева, следить за правильной осанкой, не читать лежа или в движущемся транспорте.

Во время работы на компьютере сосредоточенность внимания на экране приводит к задержке мигания, сухости роговицы. Напряжение глаз может при этом продолжаться несколько часов. Чтобы избежать отрицательных последствий, монитор компьютера необходимо располагать на столе (без дополнительного возвышения), т.к. при таком положении глаза чаще происходит мигание, смачивая поверхность глазного яблока. Расстояние до монитора должно составлять не менее 70 см. Регулярно проводить расслабляющие упражнения, наводя резкость по очереди на близко и далеко расположенные предметы, делать паузу в работе.


  • Зрительный анализатор , строение и значение . Нарушения зрения , профилактика глазных болезней . Почему при работе на компьютере необходимо строго соблюдать режим труда и отдыха ?


  • Зрительный анализатор , строение и значение . Нарушения зрения , профилактика глазных болезней . Почему при работе на компьютере необходимо строго соблюдать режим труда и отдыха ?


  • Зрительный анализатор , строение и значение . Нарушения зрения , профилактика глазных болезней . Почему при работе на компьютере необходимо строго соблюдать режим труда и отдыха ?


  • Зрительный анализатор , строение и значение . Нарушения зрения , профилактика глазных болезней . Почему при работе на компьютере необходимо строго соблюдать режим труда и отдыха ?


  • Зрительный анализатор , строение и значение . Нарушения зрения , профилактика глазных болезней . Почему при работе на компьютере необходимо строго соблюдать режим труда и отдыха ?


  • Слуховой анализатор , строение и значение . Нарушения слуха, профилактика болезней органа слуха. Объясните, почему в самолете при взлете и посадке у людей возникают болезненные ощущения в ушах и как этого избежать.


  • Нарушения зрительного анализатора делятся: - на прогрессирующие
    Ослепшие дети обладают частично сохранившейся зрительной памятью, которую необходимо развивать.
    Причины - глазные болезни на фоне общего заболевания организма, чаще всего миопия...


  • глазным болезням .
    Строение хрусталика и стекловидного тела.
    Она также является периферическим отделом зрительного анализатора .


  • Шпаргалка по глазным болезням . Строение глаза.
    Строение сетчатой оболочки и зрительного нерва. Сетчатка способствует выстиланию всей внутренней поверхности
    Исследование органа зрения


  • Главная / Офтальмология / Шпаргалка по глазным болезням .
    Строение сетчатой оболочки и зрительного нерва.
    Исследование органа зрения начинают с внешнего осмотра глаза при естественном освещении.

Найдено похожих страниц:10


Орган зрения играет важнейшую роль во взаимодействии человека с окружающей средой. С его помощью к нервным центрам поступает до 90 % информации о внешнем мире. Он обеспечивает восприятие света, цветовой гаммы и ощущение пространства. Благодаря тому, что орган зрения является парным и подвижным, зрительные образы воспринимаются объемно, т.е. не только по площади, но и по глубине.

Орган зрения включает глазное яблоко и вспомогательные органы глазного яблока. В свою очередь орган зрения – составная часть зрительного анализатора, который кроме указанных структур включает проводящий зрительный путь, подкорковые и корковые центры зрения.

Глаз имеет округлую форму, передний и задний полюсы (рис. 9.1). Глазное яблоко состоит из:

1) наружной фиброзной оболочки;

2) средней – сосудистой оболочки;

3) сетчатки;

4) ядра глаза (пере­дняя и задняя камеры, хрусталик, стекловидное тело).

Диаметр глаза примерно равен 24 мм, объем глаза у взрослого человека в среднем 7,5 см 3 .

1) Фиброзная оболочка – наружная плотная оболочка, выполняющая каркасную и защитную функции. Фиброзная оболочка подразделяется на задний отдел – склеру и прозрачный передний – роговицу.

Склера – плотная соединительно-тканая оболочка толщиной 0,3–0,4 мм в задней части, 0,6 мм вблизи роговицы. Она образована пучками коллагеновых волокон, между которыми залегают уплощенные фибробласты с небольшим количеством эластических волокон. В толще склеры в зоне соединения ее с роговицей имеется множество мелких разветвленных сообщающихся между собой полостей, образующих венозный синус склеры (шлеммов канал), через кото­рый обеспечивается отток жидкости из передней камеры глаза.К склере прикрепляются глазодвигательные мышцы.

Роговица – это прозрачная часть оболочки, которая не имеет сосудов, а по форме напоминает часовое стекло. Диаметр роговицы – 12 мм, толщина – около 1 мм. Основные свойства роговицы – прозрачность, равномерная сферичность, высокая чувствительность и высокая преломляющая способность (42 дптр). Роговица выполняет защитную и оптическую функции. Она состоит из нескольких слоев: наружного и внутрненнего эпителиальных с множеством нервных окончаний, внутренних, образованных тонкими соединительно-ткаными (коллагеновыми) пластинками, между которыми лежат уплощенные фибробласты. Эпителиоциты наружного слоя снабжены множеством микроворсинок и обильно смочены слезой. Роговица лишена кровеносных сосудов, ее питание происходит за счет диффузии из сосудов лимба и жидкости передней камеры глаза.

Рис. 9.1. Схема строения глаза:

А: 1 – анатомическая ось глазного яблока; 2 – роговица; 3 – передняя камера; 4 – задняя камера; 5 – коньюктива; 6 – склера; 7 – сосудистая оболочка; 8 – цилиарная связка; 8 – сетчатка; 9 – желтое пятно, 10 – зрительный нерв; 11 – слепое пятно; 12 – стекловидное тело, 13 – ресничатое тело; 14 – циннова связка; 15 – радужка; 16 – хрусталик; 17 – оптическая ось; Б: 1 – роговица, 2 – лимб (край роговицы), 3 – венозный синус склеры, 4 – радужно-рого-вичный угол, 5 – конъюнктива, 6 – ресничная часть сетчатки, 7 – склера, 8 – сосудистая оболочка, 9 – зубчатый край сетчатки, 10 – ресничная мышца, 11 – ресничные отростки, 12 – задняя камера глаза, 13 – радужка, 14 – задняя поверхность радужки, 15 – реснич­ный поясок, 16 – капсула хрусталика, 17 – хрусталик, 18 – сфинктер зрачка (мышца, суживающая зрачок), 19 – передняя камера глазного яблока

2) Сосудистая оболочка содержит большое количество кровеносных сосудов и пигмента. Она состоит из трех частей: собственно сосудистой оболочки, ресничного тела и радужки.

Собственно сосудистая оболочка образует большую часть сосудистой оболочки и выстилает заднюю часть склеры.

Большая часть ресничного тела – это ресничная мышца, образованная пучками миоцитов, среди которых различают продольные, циркулярные и радиальные волокна. Сокращение мышцы приводит к расслаблению волокон ресничного пояска (цинновой связки), хрусталик расправляется, округляется, вследствие этого выпуклость хрусталика и его пре­ломляющая сила увеличивается, происходит аккомодация на близлежащие предметы. Миоциты в старческом возрасте частично атрофируются, развивается соединительная ткань; это приводит к нарушению аккомодации.

Ресничное тело кпереди продолжается в радужку, которая представляет собой круглый диск с отверстием в центре (зрачок). Радужка расположена между роговицей и хрусталиком. Она отделяет переднюю камеру (ограниченную спереди роговицей) от задней (ограниченной сзади хрусталиком). Зрачковый край радужки зазубрен, латеральный периферический – ресничный край – пере­ходит в ресничное тело.

Радужка состоит из соединительной ткани с сосудами, пигментных клеток, которые определяют цвет глаз, и мышечных волокон, расположенных радиально и циркулярно, которые образуют сфинктер (суживатель) зрачка и дилататор зрачка. Различное количество и качество пигмента меланина обусловливает цвет глаз – карий, черный, (при наличии большого количества пигмента) или голубой, зеленоватый (если мало пигмента).

3) Сетчатка – внутренняя (светочувствительная) оболочка глазного яблока – на всем протяжении прилежит изнутри к сосудистой оболочке. Она состоит из двух листков: внутреннего – светочувствительного (нервная часть) и наружного – пигментного. Сетчатка делится на две части – заднюю зрительную и переднюю (ресничную и радужковую). Последняя не содержит светочувствительных клеток (фоторецепторов). Границей между ними является зубчатый край, который расположен на уровне перехода собственно сосудистой оболочки в ресничный кружок. Место выхода из сетчатки зрительного нерва называется диском зрительного нерва (слепое пятно, где также отсутствуют фоторецепторы). В центре диска в сетчатку входит центральная артерия сетчатки.

Зрительная часть состоит из наружной пигментной и внутренней нервной частей. Во внутреннюю часть сетчатки входят клетки с отростками в форме колбочек и палочек, которые являются светочувствительными элементами глазного яблока. Колбочки воспринимают световые лучи при ярком (дневном) свете и являются одновременно рецепторами цвета, а палочки функционируют при сумеречном освещении и играют роль рецепторов сумеречного света. Остальные нервные клетки выпол­няют связующую роль; аксоны этих клеток, соединившись в пучок, образуют нерв, который выходит из сетчатки.

Каждая палочка состоит из наружного и внутреннего сегментов. Наружный сегмент – светочувствительный – образован сдвоенными мембранными дисками, которые представляют собой складки плазматической мем­браны. Зрительный пурпур – родопсин, располагающийся в мембранах наружного сегмента, под действием света изменяется, что приводит к возникновению импульса. Наружный и внутренний сегменты связаны между собой ресничкой. Во внутреннем сегменте – множество митохондрий, рибосом, элементов эндоплазматической сети и пластинчатого комплекса Гольджи.

Палочки покрывают почти всю сетчатку за исключением «слепого» пятна. Наибольшее количество колбочек находится на расстоянии около 4 мм от диска зрительного нерва в углублении округлой формы, так называемое желтое пятно, в нем отсутствуют сосуды и оно является местом наилучшего видения глаза.

Различают три типа колбочек, каждый из которых воспринимает свет определенной длины волны. В отличие от палочек в наружном сег­менте одного типа имеется иодопсин, к оторый воспринимает красный свет. Количество колбочек в сетчатке глаза человека достигает 6–7 млн, коли­чество палочек – в 10–20 раз больше.

4) Ядро глаза состоит из камер глаза, хрусталика и стекловидного тела.

Радужка разделяет пространство между роговицей, с одной стороны, и хрусталиком с цинновой связкой и ресничным телом, с другой, на две камеры переднюю изаднюю, которые играют важную роль в циркуляции водянистой влаги внутри глаза. Водянистая влага – жидкость с очень низкой вязкостью, она содер­жит около 0,02 % белка. Водянистая влага вырабатывается капиллярами ресничных отростков и радужки. Обе камеры сообщаются между собой через зрачок. В углу передней камеры, образованном краем радужки и роговицы, по окружности располагаются выстланные эндотелием щели, через которые передняя камера сообщается с венозным синусом склеры, а последний – с системой вен, куда оттекает водянистая влага. В норме количе­ство образовавшейся водянистой влаги строго соответствует количеству оттекающей. При нарушении оттока водянистой влаги возникает повышение внутриглазного давления – глаукома. При несвоевременном лечении данное состояние может привести к слепоте.

Хрусталик – прозрачная двояковыпуклая линза диаметром около 9 мм, имеющая переднюю и заднюю поверхности, которые переходят одна в другую в области экватора. Коэффициент преломления хрусталика в поверхностных слоях равен 1,32; в центральных – 1,42. Эпителиальные клетки, распо­ложенные вблизи экватора, являются ростковыми, они делятся, уд­линяются, дифференцируются в хрусталиковые волокна и накладываются на периферические волокна позади экватора, в результате чего диаметр хрусталика увеличивается. В процессе дифференцировки ядро и органеллы исчезают, в клетке сохраняются лишь свободные рибосомы и микротрубочки. Хрусталиковые волокна дифференцируются в эмбриональном периоде из эпителиальных клеток, покрывающих заднюю поверхность образующегося хрусталика, и сохраняются в течение всей жизни человека. Волокна склеены между собой веществом, чей индекс светопреломления аналогичен таковому в волокнах хрусталика.

Хрусталик как бы подвешен на ресничном пояске (цинновой связке) между волокнами которого расположены пространства пояска, (петитов канал), сообщающиеся с камерами глаза. Волокна пояска прозрачны, они сливаются с веществом хрусталика и пере­дают ему движения ресничной мышцы. При натяжении связки (расслабление ресничной мышцы) хрусталик уплощается (установ­ка на дальнее видение), при расслаблении связки (сокращение ресничной мышцы) выпуклость хрусталика увеличивается (уста­новка на ближнее видение). Это и называется аккомодацией глаза.

Снаружи хрусталик покрыт тонкой прозрачной эластичной капсулой, к ко­торой прикрепляется ресничный поясок (циннова связка). При сокращении ресничной мышцы изменяются размеры хрусталика и его преломляющая способность.Хрусталик обеспечивает аккомодацию глазного яблока, преломляя световые лучи силой в 20 диоптрий.

Стекловидное тело заполняет пространство между сетчаткой сзади, хрусталиком и задней стороной ресничного пояска спереди. Оно представляет собой аморфное межклеточное вещество желеобразной консистенции, которое не имеет сосудов и нервов и покрыто оболочкой, его индекс светопреломления – 1,3. Стекловидное тело состоит из гигроскопического белка витреина и гиалуроновой кислоты. На передней поверхности стекловидного тела имеется ямка, в которой располагается хрусталик.

Вспомогательные органы глаза. К вспомогательным органам глаза относятся мышцы глазного яблока, фасции глазницы, веки, брови, слезный аппарат, жировое тело, конъюнктива, влагалище глазного яблока. Двигательный аппарат глаза представлен шестью мышцами. Мышцы начинаются от сухожильного кольца вокруг зрительного нерва в глубине глазницы и прикрепляются к глазному яблоку. Мышцы действуют таким образом, что оба глаза поворачиваются согласованно и направлены в одну и ту же точку (рис. 9.2).

Рис. 9.2. Мышцы глазного яблока (глазодвигательные мышцы):

А – вид спереди, Б – вид сверху; 1 – верхняя прямая мышца, 2 – блок, 3 – верхняя косая мышца, 4 – медиальная прямая мышца, 5 – нижняя косая мышца, б – нижняя прямая мышца, 7 – латеральная прямая мышца, 8 – зрительный нерв, 9 – перекрест зрительных нервов

Глазница, в которой находится глазное яблоко, состоит из надкостницы глазницы. Между влагалищем и надкостницей глазницы находится жировое тело глазницы, которое выполняет роль эластичной подушки для глазного яблока.

Веки (верхнее и нижнее) представляют собой образования, которые лежат впереди глазного яблока и прикрывают его сверху и снизу, а при смыкании полностью его скрывают. Пространство между краями век называется глазной щелью, вдоль переднего края век расположены ресницы. Основу века составляет хрящ, который сверху покрыт кожей. Веки уменьшают или перекрывают доступ светового потока. Брови и ресницы – это короткие щетинковые волосы. При мигании ресницы задерживают крупные частицы пыли, а брови способствуют отведению пота в латеральном и медиальном направлении от глазного яблока.

Слезный аппарат состоит из слезной железы с выводными протоками и слезоотводящих путей (рис. 9.3). Слезная железа расположена в верхнелатеральном углу глазницы. Она выделяет слезу, состоящую в основном из воды, в которой содержится около 1,5 % NaCl, 0,5 % альбумина и слизь, а также в слезе имеется лизоцим, обладающий выраженным бактерицидным действием.

Кроме того, слеза обеспечивает смачивание роговицы – препятствует ее воспалению, удаляет с ее поверхности частицы пыли и участвует в обеспечении ее питания. Движе­нию слезы способствуют мигательные движения век. Затем слеза по капиллярной щели около края век оттекает в слезное озеро. В этом месте берут начало слезные канальца, которые открываются в слезный мешок. После­дний находится в одноименной ямке в нижнемедиальном углу глазницы. Книзу он переходит в довольно широкий носослезный канал, по которому слезная жид­кость попадает в полость носа.

Зрительное восприятие

Формирование изображения в глазу происходит при участии оптических систем (роговицы и хрусталика), дающих перевернутое и уменьшенное изображение объекта на поверхности сетчатки. Кора головного мозга осуществляет еще один поворот зрительного образа, благодаря чему мы видим различные объекты окружающего мира в реальном виде.

Приспособление глаза к ясному видению на расстоянии удаленных предметов называют аккомодацией. Механизм аккомодации глаза связан с сокращением ресничных мышц, которые изменяют кривизну хрусталика. При рассмотрении предметов на близком расстоянии одновременно с аккомодацией действует и конвергенция, т. е. происходит сведение осей обоих глаз. Зрительные линии сходятся тем больше, чем ближе находится рассматриваемый предмет.

Преломляющую силу оптической системы глаза выражают в диоптриях – (дптр). Преломляющая сила глаза человека составляет 59 дптр при рассмотрении дале­ких и 72 дптр – при рассмотрении близких предметов.

Существуют три главные аномалии преломления лучей в глазу (рефракции): близорукость, или миопия; дальнозоркость, или гиперметропия, и астигматизм (рис. 9.4). Основная причина всех дефектов глаза состоит в том, что не согласуются между собой преломляющая сила и длина глазного яблока, как в нормальном глазу. При близорукости лучи сходятся перед сетчаткой в стекловидном теле, а на сетчатке вместо точки возникает круг светорассеяния, глазное яблоко при этом имеет большую длину, чем в норме. Для коррекции зрения используют вог­нутые линзы с отрицательными диоптриями.

Рис. 9.4. Ход лучей света в глазу:

а – при нормальном зрении, б – при близорукости, в – при дальнозоркости, г – при астигматизме; 1 – коррекция двояковогнутой линзой для исправления дефектов близорукости, 2 – двояковыпуклой – дальнозоркости, 3 – цилиндрической – астигматизма

При дальнозоркости глазное яблоко короткое, и поэтому параллельные лучи, идущие от далеких предметов, собираются сзади сетчатки, а на ней получается неясное, расплывчатое изображение предмета. Этот недостаток может быть компенсирован путем использования преломляющей силы выпуклых линз с положительными диоптриями. Астигматизм – различное преломление лучей света в двух главных меридианах.

Старческая дальнозоркость (пресбиопия) связана со слабой эластичностью хрусталика и ослаблением натяжения цинновых связок при нормальной длине глазного яблока. Исправить это нарушение рефракции можно с помощью двояковыпуклых линз.

Зрение одним глазом дает нам представление о предмете лишь в одной плоскости. Только зрение одновременно двумя глазами дает восприятие глубины и правильное представление о взаимном расположении предметов. Способность к слиянию отдельных изображений, получаемых каждым глазом, в единое целое обеспечивает бинокулярное зрение.

Острота зрения характеризует пространственную разрешающую способность глаза и определяется тем наименьшим углом, при котором человек способен различать раздельно две точки. Чем меньше угол, тем лучше зрение. В норме этот угол равен 1 минуте, или 1 единице.

Для определения остроты зрения используют специальные таблицы, на которых изображены буквы или фигурки различного размера.

Поле зрения – это пространство, которое воспринимается одним глазом при неподвижном его состоянии. Изменение поля зрения может быть ранним признаком некоторых заболеваний глаз и головного мозга.

Механизм фоторецепции основан на поэтапном превращении зрительного пигмента родопсина под действием квантов света. Последние поглощаются группой атомов (хромофоры) специализированных молекул – хромолипопротеинов. В каче­стве хромофора, который определяет степень поглощения света в зрительных пигментах, выступают альдегиды спиртов витамина А, или ретиналь. Ретиналь в норме (в темноте) связывается с бесцветным белком опсином, образуя при этом зрительный пигмент родопсин. При поглощении фотона цис-ретиналь переходит в полную трансформу (изменяет конформацию) и отсоединяется от опсина, при этом в фоторецепторе запускается электрический импульс, который направляется в головной мозг. При этом молекула теряет цвет, и этот процесс называют выцветанием. После прекращения воздействия света родопсин тотчас же ресинтезируется. В полной темноте необходимо около 30 минут, чтобы все палочки адап­тировались и глаза приобрели максимальную чувствительность (весь цис-ретиналь соединился с опсином, вновь образуя родопсин). Этот процесс беспрерывный и лежит в основе темновой адаптации.

От каждой фоторецепторной клетки отходит тонкий отросток, заканчивающийся в наружном сетчатом слое утолщением, которое образует синапс с отростками биполярных нейронов.

Ассоциативные нейроны , расположенные в сетчатке, передают возбуждение от фоторецепторных клеток к крупным оптикоганглионарным невроцитам , аксоны которых (500 тыс – 1 млн) и образуют зрительный нерв, который выходит из глазницы через канал зрительного нерва. На нижней поверхности мозга образуется перекрест зрительных нервов. Информация от латеральных частей сетчатки, не перекрещиваясь, направляется в зрительный тракт, а от медиальных – перекрещивается. Затем импульсы проводятся к подкорковым центрам зрения, которые расположены в среднем и промежуточном мозге: верхние холмики среднего мозга обеспечивают ответную реакцию на неожиданные зри­тельные раздражители; задние ядра таламуса (зрительного бугра) промежуточного мозга обеспечивают бессознательную оценку зрительной информации; от латеральных коленчатых тел промежуточного мозга по зрительной лучистости импульсы направляются к корковому центру зрения. Он расположен в шпорной борозде затылочной доли и обеспечивает сознательную оценку поступившей информации (рис. 9.5).

  • Инж. геол. изыск.проводят для сбора данных характерных геологическое строение местности по к-ой прокладывается дорога и ее гидрогеологические условия

  • У человека есть удивительный дар, который он не всегда ценит, — возможность видеть. Человеческий глаз способен различать мелкие предметы и малейшие оттенки, при этом видеть не только днем, но и ночью. Специалисты утверждают, что с помощью зрения мы узнает от 70 до 90 процентов всей информации. Многие произведения искусства не были бы возможны при отсутствии глаз.

    Поэтому разберемся подробнее, зрительный анализатор – что это такое, какие он выполняет функции, какое имеет строение?

    Составляющие зрения и их функции

    Начнем с рассмотрения строения зрительного анализатора, состоящего из:

    • глазного яблока;
    • проводящих путей — по ним картинка, зафиксированная глазом, подается в подкоровые центры, а потом и в кору мозга.

    Поэтому в целом выделяют три отдела зрительного анализатора:

    • периферическая – глаза;
    • проводниковая – зрительный нерв;
    • центральная – зрительная и подкорковая зоны коры головного мозга.

    Зрительный анализатор еще называют зрительной секреторной системой. Глаз включает в себя глазницу, а также вспомогательный аппарат.

    Центральная часть находится в основном в затылочной части мозговой коры. Вспомогательный аппарат глаза представляет собой систему защиты и движения. В последнем случае внутренняя часть век имеет слизистую оболочку, называемую конъюнктивой. Защитная система включает нижнее и верхнее веко с ресницами.

    Пот с головы спускается вниз, но не попадает в глаза за счет существования бровей. В слезах есть лизоцим, который убивает вредоносные микроорганизмы, попадающие в глаза. Моргание век способствует регулярному увлажнению яблока, после чего слезы спускаются ближе к носу, где попадают в слезной мешок. Дальше они переходят в полость носа.

    Глазное яблоко двигается постоянно, для чего предусмотрено 2 косые и 4 прямые мышцы. У здорового человека оба глазных яблока перемещаются в одном направлении.

    Диаметр органа составляет 24 мм, а его масса – около 6-8 г. Яблоко располагается в глазнице, сформированной костями черепа. Есть три оболочки: сетчатка, сосудистая и наружная.

    Наружная

    Внешняя оболочка имеет роговицу и склеру. В первой нет кровеносных сосудов, однако имеет множество нервных окончаний. Питание осуществляется благодаря межклеточной жидкости. Роговица пропускает свет, а также выполняет защитную функцию, предотвращая повреждение внутренности глаза. Она имеет нервные окончания: в результате попадания на нее даже небольшой пыли появляются режущие боли.

    Склера имеет либо белый, либо голубоватый цвет. К ней фиксируются глазодвительные мышцы.

    Средняя

    В средней оболочке можно выделить три части:

    • сосудистая оболочка, находящаяся под склерой, имеет множество сосудов, поставляет кровь для сетчатки;
    • ресничное тело контактирует с хрусталиком;
    • радужка – зрачок реагирует на интенсивность света, который попадает на сетчатку (расширяется при слабом, сужается при сильном освещении).

    Внутренняя

    Сетчатка – мозговая ткань, которая позволяет реализовать функцию зрения. Она выглядит как тонкая оболочка, прилегающая по всей поверхности к сосудистой оболочке.

    Глаз имеет две камеры, заполненные прозрачной жидкостью:

    • переднюю;
    • заднюю.

    В итоге можно выделить факторы, которые обеспечивают выполнение всех функций зрительного анализатора:

    • достаточное количество света;
    • фокусировка картинки на сетчатке;
    • аккомодационный рефлекс.

    Глазодвигательные мышцы

    Они являются частью вспомогательной системы органа зрения и зрительного анализатора. Как отмечалось, есть две косые и четыре прямые мышцы.

    • нижняя;
    • верхняя.
    • нижняя;
    • латеральная;
    • верхняя;
    • медиальная.

    Прозрачные среды внутри глаз

    Они необходимы, чтобы пропускать лучи света к сетчатке, а также их преломлять в роговице. Дальше лучи попадают в переднюю камеру. Затем преломление осуществляется хрусталиком – линзой, меняющей силу преломления.

    Можно выделить два основных нарушения зрения:

    • дальнозоркость;
    • близорукость.

    Первое нарушение образуется при снижении выпуклости хрусталика, близорукость – наоборот. В хрусталике нет нервов, сосудов: развитие воспалительных процессов исключено.

    Бинокулярное зрение

    Чтобы получить одну картинку, сформированную двумя глазами, картинка фокусируется в одной точке. Такие линии зрения расходятся при взгляде на удаленные объекты, сходятся – близкие.

    Еще благодаря бинокулярному зрению можно определить нахождение объектов в пространстве по отношению друг к другу, оценивать их удаленность, прочее.

    Гигиена зрения

    Мы рассмотрели строение зрительного анализатора, а также определенным образом разобрались, как ведется работа зрительного анализатора. А напоследок стоит узнать, как же правильно следить за гигиеной органов зрения, чтобы обеспечить их эффективную и бесперебойную работу.

    • необходимо защищать глаза от механического воздействия;
    • читать книги, журналы и прочую текстовую информацию необходимо с хорошим освещением, держать объект чтения на должном расстоянии – около 35 см;
    • желательно, чтобы свет падал слева;
    • чтение на коротком расстоянии способствует развитию близорукости, поскольку хрусталику длительное время приходится пребывать в выпуклом состоянии;
    • нельзя допускать воздействия излишне яркого освещения, которое способно разрушить световоспринимающие клетки;
    • не стоит читать в транспорте или лежа, поскольку в этом случае постоянно меняется фокусное расстояние, снижается эластичность хрусталика, ослабевает ресничная мышца;
    • нехватка витамина А может спровоцировать снижение остроты зрения;
    • частые прогулки на свежем воздухе – хорошая профилактика многих заболеваний глаз.

    Подведение итогов

    Следовательно, можно отметить, что зрительный анализатор представляет собой непростой, но весьма важный инструмент для обеспечения качественной жизни человека. Не зря изучение органов зрения переросло в отдельную дисциплину – офтальмологию.

    Кроме определенной функции, глаза играют еще и эстетическую роль, украшая человеческое лицо. Поэтому зрительный анализатор – очень важный элемент организма, очень важно соблюдать гигиену органов зрения, периодически приходить на осмотр к врачу и правильно питаться, вести здоровый образ жизни.

    Дата: 20.04.2016

    Комментариев: 0

    Комментариев: 0

    • Немного о строении зрительного анализатора
    • Функции радужной оболочки и роговицы
    • Что дает преломление изображения на сетчатке
    • Вспомогательный аппарат глазного яблока
    • Глазные мышцы и веки

    Зрительный анализатор – это парный орган зрения, представленный глазным яблоком, мышечной системой глаза и вспомогательным аппаратом. С помощью способности видеть человек может различать цвет, форму, величину предмета, его освещенность и расстояние на котором он находится. Так человеческий глаз способен различать направление движения предметов или их неподвижность. 90% информации человек получает благодаря способности видеть. Орган зрения является самым важным из всех органов чувств. Зрительный анализатор включает в себя глазное яблоко с мышцами и вспомогательный аппарат.

    Немного о строении зрительного анализатора

    Глазное яблоко расположено в глазнице на жировой подушке, которая служит амортизатором. При некоторых заболеваниях, кахексии (исхудание) жировая подушка истончается, глаза опускаются вглубь глазной впадины и создается ощущение, что они «запали». Глазное яблоко имеет три оболочки:

    • белочную;
    • сосудистую;
    • сетчатую.

    Характеристики зрительного анализатора довольно сложны, поэтому разбирать их нужно по порядку.

    Белочная оболочка (склера) является самой наружной оболочкой глазного яблока. Физиология этой оболочки устроена так, что она состоит из плотной соединительной ткани, не пропускающей лучи света. К склере прикрепляются мышцы глаза, обеспечивающие движения глаза и конъюнктива. Передняя часть склеры имеет прозрачную структуру и называется роговицей. На роговице сконцентрировано огромное количество нервных окончаний, обеспечивающих ее высокую чувствительность, а кровеносные сосуды в этой области отсутствуют. По форме она круглая и несколько выпуклая, что позволяет обеспечить правильное преломление лучей света.

    Сосудистая оболочка состоит из большого количества кровеносных сосудов, которые обеспечивают трофику глазного яблока. Строение зрительного анализатора устроено так, что сосудистая оболочка прерывается в том месте, где склера переходит в роговицу и образует вертикально расположенный диск, состоящий из сплетений сосудов и пигмента. Эта часть оболочки носит название радужки. Пигмент, содержащийся в радужке у каждого человека свой, он и обеспечивает цвет глаз. При некоторых заболеваниях пигмент может уменьшаться или совсем отсутствовать (альбинизм), тогда радужная оболочка приобретает красный цвет.

    В центральной части радужки расположено отверстие, диаметр которого изменяется в зависимости от интенсивности освещения. Лучи света проникают в глазное яблоко на сетчатую оболочку только через зрачок. Радужная оболочка имеет гладкую мускулатуру – круговые и радиальные волокна. Она отвечает за диаметр зрачка. Круговые волокна отвечают за сужение зрачка, иннервирует их периферическая нервная система и глазодвигательный нерв.

    Радиальные мышцы относят к симпатической нервной системе. Управление этими мышцами осуществляется из единого мозгового центра. Потому расширение и сужение зрачков происходит сбалансированно, независимо от того на один глаз подействовать ярким светом или на оба.

    Вернуться к оглавлению

    Функции радужной оболочки и роговицы

    Радужка является диафрагмой глазного аппарата. Она обеспечивает регулирование поступления лучей света на сетчатку. Зрачок сужается, когда на сетчатку после преломлений попадает меньшее количество лучей света.

    Происходит это при повышении интенсивности освещения. При снижении освещения зрачок расширяется и на глазное дно попадает большее количество света.

    Анатомия зрительного анализатора устроена так, что диаметр зрачков зависит не только от освещения, на этот показатель влияют и некоторые гормоны организма. Так, например, при испуге выделяется большое количество адреналина, который также способен действовать на сократительную способность мышц, отвечающих за диаметр зрачка.

    Радужка и роговица не соединены: имеется пространство, которое называется передней камерой глазного яблока. Передняя камера заполнена жидкостью, выполняющей трофическую функцию для роговицы и участвующую в преломлении света при прохождении лучей света.

    Третья сетчатая оболочка – это специфический воспринимающий аппарат глазного яблока. Сетчатая оболочка образована разветвленными нервными клетками, которые выходят из глазного нерва.

    Сетчатая оболочка расположена сразу за сосудистой и выстилает большую часть глазного яблока. Схема строения сетчатки очень сложная. Воспринимать предметы способна только задняя часть сетчатой оболочки, которая образована специальными клетками: колбочками и палочками.

    Схема строения сетчатки очень сложная. Колбочки отвечают за восприятие цвета предметов, палочки – за интенсивность освещения. Палочки и колбочки расположены вперемешку, но в некоторых участках есть скопление только палочек, а в некоторых – только колбочек. Свет, попадая на сетчатку, вызывает реакцию внутри этих специфических клеток.

    Вернуться к оглавлению

    Что дает преломление изображения на сетчатке

    Вследствие такой реакции вырабатывается нервный импульс, который передается по нервным окончаниям в зрительный нерв, а затем в затылочную долю коры головного мозга. Интересно, что проводящие пути зрительного анализатора имеют полный и неполный перекрест между собой. Таким образом информация из левого глаза поступает в затылочную долю коры головного мозга справа и наоборот.

    Интересным фактом является и то, что изображение предметов после преломлений на сетчатке передается в перевернутом виде.

    В таком виде информация поступает в кору головного мозга, где потом обрабатывается. Воспринимать предметы в том виде, в каком они есть, это приобретенный навык.

    Новорожденные дети воспринимают мир в перевернутом виде. По мере роста и развития головного мозга вырабатываются эти функции зрительного анализатора и ребенок начинает воспринимать внешний мир в истинном виде.

    Система преломления представлена:

    • передней камерой;
    • задней камерой глаза;
    • хрусталиком;
    • стекловидным телом.

    Передняя камера расположена между роговицей и радужкой. Она обеспечивает питание роговичной оболочки. Задняя камера находится между радужкой и хрусталиком. И передняя и задняя камеры заполнены жидкостью, которая способна циркулировать между камерами. Если эта циркуляция нарушается, то возникает заболевание, которое приводит к нарушению зрения и может привести даже к его потере.

    Хрусталик – это двояковыпуклая прозрачная линза. Функция хрусталика – преломление лучей света. Если при некоторых заболеваниях изменяется прозрачность этой линзы, то возникает такое заболевание, как катаракта. На сегодняшний день единственным лечением катаракты является замена хрусталика. Операция эта несложная и довольно хорошо переносится пациентами.

    Стекловидное тело заполняет все пространство глазного яблока, обеспечивая постоянную форму глаза и его трофику. Стекловидное тело представлено студенистой прозрачной жидкостью. При прохождении через нее лучи света преломляются.

    Зрительный анализатор человека является сложной нервно-рецепторной системой, предназначенной для восприятия и анализа световых раздражений. Согласно И. П. Павлову, в нем, как и в любом анализаторе, имеются три основных отдела - рецепторный, проводниковый и корковый. В периферических рецепторах - сетчатке глаза происходят восприятие света и первичный анализ зрительных ощущений. Проводниковый отдел включает зрительные пути и глазодвигательные нервы. В корковый отдел анализатора, расположенный в области шпорной борозды затылочной доли мозга, поступают импульсы как от фоторецепторов сетчатки, так и от про-приорецепторов наружных мышц глазного яблока, а также мышц, заложенных в радужной оболочке и цилиарном теле. Кроме того, имеются тесные ассоциативные связи с другими анализаторными системами.

    Источником деятельности зрительного анализатора является превращение световой энергии в нервный процесс, возникающий в органе чувств. По классическому определению В. И. Ленина, «... ощущение есть действительно непосредственная связь сознания с внешним миром, есть превращение энергии внешнего раздражения в факт сознания. Это превращение каждый человек миллионы раз наблюдал и наблюдает действительно на каждом шагу».

    Адекватным раздражителем для органа зрения служит энергия светового излучения. Человеческий глаз воспринимает свет с длиной волны от 380 до 760 нм. Однако в специально созданных условиях этот диапазон заметно расширяется в сторону инфракрасной части спектра до 950 нм и в сторону ультрафиолетовой части - до 290 нм.

    Такой диапазон световой чувствительности глаза обусловлен формированием его фоторецепторов приспособительно к солнечному спектру. Земная атмосфера на уровне моря полностью поглощает ультрафиолетовые лучи с длиной волны менее 290 нм, часть ультрафиолетового излучения (до 360 нм) задерживается роговицей и особенно хрусталиком.

    Ограничение восприятия длинноволнового инфракрасного излучения связано с тем, что внутренние оболочки глаза сами излучают энергию, сосредоточенную в инфракрасной части спектра. Чувствительность глаза к этим лучам привела бы к снижению четкости изображения предметов на сетчатке за счет освещения полости глаза светом, исходящим из его оболочек.

    Зрительный акт является сложным нейрофизиологическим процессом, многие детали которого еще не выяснены. Он состоит из 4 основных этапов.

    1.С помощью оптических сред глаза (роговица, хрусталик) на фоторецепторах сетчатки образуется действительное, но инвертированное (перевернутое) изображение предметоввнешнего мира.

    2. Под воздействием световой эвергии в фоторецепторах (колбочки, палочки) происходит сложный фотохимический процесс, приводящий к распаду зрительных пигментов с последующей их регенерацией при участии витамина А и других веществ. Этот фотохимический процесс способствует трансформации световой энергии в нервные импульсы. Правда, до сих пор неясно, каким образом зрительный пурпур участвует в возбуждении фоторецепторов.


    Светлые, темные и цветные детали изображения предметов по-разному возбуждают фоторецепторы сетчатки и позволяют воспринимать свет, цвет, форму и пространственные отношения предметов внешнего мира.

    3. Импульсы, возникшие в фоторецепторах, проводятся по нервным волокнам к зрительным центрам коры головного мозга.

    4. В корковых центрах происходит превращение энергии нервного импульса в зрительное ощущение и восприятие. Но каким образом происходит это преобразование, до сих пор неизвестно.

    Таким образом, глаз является дистантным рецептором, дающим обширную информацию о внешнем мире без непосредственного контакта с его предметами. Тесная связь с другими анализаторными системами позволяет с помощью зрения на расстоянии получить представление о свойствах предмета, которые могут быть восприняты только другими рецепторами - вкусовыми, обонятельными, тактильными. Так, вид лимона и сахара создает представление о кислом и сладком, вид цветка - о его запахе, снега и огня - о температуре и т. п. Сочетанная и взаимная связь различных рецепторных систем в единую совокупность создается в процессе индивидуального развития.

    Дистантный характер зрительных ощущений оказывал существенное влияние на процесс естественного отбора, облегчая добывание пищи, своевременно сигнализируя об опасности и способствуя свободной ориентации в окружающей обстановке. В процессе эволюции шло совершенствование зрительных функций, и они стали важнейшим источником информации о внешнем мире.

    Основой всех зрительных функций является световая чувствительность глаза. Функциональная способность сетчатки неравноценна на всем ее протяжении. Наиболее высока она в области желтого пятна и особенно в центральной ямке. Здесь сетчатка представлена только нейроэпителием и состоит исключительно из высокодифференцированных колбочек. При рассматривании любого предмета глаз устанавливается таким образом, что изображение предмета всегда проецируется на область центральной ямки. На остальной части сетчатки преобладают менее дифференцированные фоторецепторы - палочки, и чем дальше от центра проецируется изображение предмета, тем менее отчетливо оно воспринимается.

    В связи с тем, что сетчатка животных, ведущих ночной образ жизни, состоит преимущественно из палочек, а дневных животных - из колбочек, Шульце в 1868 г. высказал предположение о двойственной природе зрения, согласно которому дневное зрение осуществляется колбочками, а ночное - палочками. Палочковый аппарат обладает высокой светочувствительностью, но не способен передавать ощущение цветности; колбочки обеспечивают цветное зрение, но значительно менее чувствительны к слабому свету и функционируют только при хорошем освещении.

    В зависимости от степени освещенности можно выделить три разновидности функциональной способности глаза.

    1. Дневное (фотопическое) зрение (от греч. photos - свет и opsis - зрение) существляется колбочковым аппаратом глаза при большой интенсивности освещения. Оно характеризуется высокой остротой зрения и хорошим восприятием цвета.

    2. Сумеречное (мезопическое) зрение (от греч. mesos - средний, промежуточный) осуществляется палочковым аппаратом глаза при слабой степени освещенности (0,1-0,3лк). Оно характеризуется низкой остротой зрения и ахроматичным восприятием предметов. Отсутствие цветовосприятия при слабом освещении хорошо отражено в пословице «ночью все кошки серы».

    3. Ночное (скотопическое) зрение (от греч. skotos - темнота) также осуществляется палочками при пороговой и надпороговой освещенности. Оно сводится только к ощущению света.

    Таким образом, двойственная природа зрения требует дифференцированного подхода к оценке зрительных функций. Следует различать центральное и периферическое зрение.

    Центральное зрение осуществляется колбочковым аппаратом сетчатки. Оно характеризуется высокой остротой зрения и восприятием цвета. Другой важной чертой центрального зрения является визуальное восприятие формы предмета. В осуществлении форменного зрения решающее значение принадлежит корковому отделу зрительного анализатора. Так, среди рядов точек человеческий глаз легко формирует их в виде треугольников, наклонных линий за счет именно корковых ассоциаций (рис. 46).

    Рис. 46. Графическая модель, демонстрирующая участие коркового отдела зрительного анализатора в восприятии формы предмета.

    Значение коры головного мозга в осуществлении форменного зрения подтверждают случаи потери способности распознавать форму предметов, наблюдаемые иногда при повреждении затылочных областей мозга.

    Периферическое палочковое зрение служит для ориентации в пространстве и обеспечивает ночное и сумеречное зрение.

    ЦЕНТРАЛЬНОЕ ЗРЕНИЕ

    Острота зрения

    Для распознавания предметов внешнего мира необходимо не только выделить их по яркости или цвету на окружающем фоне, но и различить в них отдельные детали. Чем мельче детали может воспринимать глаз, тем выше его острота зрения (visus). Под остротой зрения принято понимать способность глаза воспринимать раздельно точки, расположенные друг от друга на минимальном расстоянии.

    При рассматривании темных точек на светлом фоне их изображения на сетчатке вызывают возбуждение фоторецепторов, количественно отличающееся от возбуждения, вызываемого окружающим фоном. В связи с этим становится различимым светлый промежуток между точками и они воспринимаются как раздельные. Величина промежутка между изображениями точек на сетчатке зависит как от расстояния между ними на экране, так и от удаленности их от глаза. В этом легко убедиться, отдаляя книгу от глаз. Вначале исчезают наиболее мелкие промежутки между деталями букв и последние становятся неразборчивыми, затем исчезают промежутки между словами и строка видится в виде линии, и, наконец, происходит слияние строк в общий фон.

    Взаимосвязь между величиной рассматриваемого объекта и удаленностью последнего от глаза характеризует угол, под которым виден объект. Угол, образованный крайними точками рассматриваемого объекта и узловой точкой глаза, называется углом зрения. Острота зрения обратно пропорциональна углу зрения: чем меньше угол зрения, тем выше острота зрения. Минимальный угол зрения, позволяющий раздельно воспринимать две точки, характеризует остроту зрения исследуемого глаза.

    Определение минимального угла зрения для нормального глаза человека имеет уже трехсотлетнюю историю. Еще в 1674 г. Гук с помощью телескопа установил, что минимальное расстояние между звездами, доступное для их раздельного восприятия невооруженным глазом, равно 1 угловой минуте. Через 200 лет, в 1862 г., Снеллен использовал эту величину при построении таблиц для определения остроты зрения, приняв угол зрения в 1 мин. за физиологическую норму. Только в 1909 г. на Интернациональном конгрессе офтальмологов в Неаполе угол зрения 1 мин был окончательно утвержден в качестве международного эталона для определения нормальной остроты зрения, равной единице. Однако эта величина не предельная, а скорее характеризующая нижнюю границу нормы. Встречаются люди с остротой зрения 1,5; 2,0; 3,0 и более единиц. Гумбольт описал жителя Бреслау с остротой зрения 60 единиц, который невооруженным глазом различал спутники Юпитера, видимые с земли под углом зрения 1 с.

    Предел различительной способности глаза во многом обусловлен анатомическими размерами фоторецепторов желтого пятна. Так, угол зрения 1 мин соответствует на сетчатке линейной величине 0,004 мм, что, например, равно диаметру одной колбочки. При меньшем расстоянии изображение падает на одну или две соседние колбочки и точки воспринимаются слитно. Раздельное восприятие точек возможно только в том случае, если между двумя возбужденными колбочками находится одна интактная.

    В связи с неравномерным распределением колбочек в сетчатке различные ее участки неравноценны по остроте зрения. Наиболее высокая острота зрения в области центральной ямки желтого пятна, а по мере удаления от нее быстро падает. Уже на расстоянии 10° от центральной ямки она равна всего 0,2 и еще более снижается к периферии, поэтому правильнее говорить не об остроте зрения вообще, а об остроте центрального зрения.

    Острота центрального зрения меняется в различные периоды жизненного цикла. Так, у новорожденных она очень низка. Форменное зрение появляется у детей после установления устойчивой центральной фиксации. В 4-месячном возрасте острота зрения несколько меньше 0,01 и к году постепенно достигает 0,1. Нормальной острота зрения становится к 5-15 годам. В процессе старения организма происходит постепенное падение остроты зрения. По данным Лукиша, если принять за 100% остроту зрения в 20-летнем возрасте, то в 40 лет она снижается до 90%, в 60 лет - до 74% и к 80 годам - до 42 %.

    Для исследования остроты зрения применяются таблицы, содержащие несколько рядов специально подобранных знаков, которые называются оптотипами. В качестве оптотипов используются буквы, цифры, крючки, полосы, рисунки и т. п. Еще Снеллен в 1862 г. предложил вычерчивать оптотипы таким образом, чтобы весь знак был виден под углом зрения 5 мин, а его детали - под углом 1 мин. Под деталью знака понимается как толщина линий, составляющих оптотип, так и промежуток между этими линиями. Из рис. 47 видно, что все линии, составляющие оптотип Е, и промежутки между ними ровно в 5 раз меньше размеров самой буквы.


    Рис.48. Принцип построения оптотипа Ландольта

    В 1909 г. на XI Международном конгрессе офтальмологов кольца Ландольта были приняты в качестве интернационального оптотипа. Они входят в большинство таблиц, получивших практическое применение.

    В Советском Союзе наиболее распространены таблицы С. С. Головина и Д. А. Сивцева, в которые наряду с таблицей,составленной из колец Ландольта, входит таблица с буквенными оптотипами (рис. 49).


    В этих таблицах впервые буквы были подобраны не случайно, а на основании углубленного изучения степени их узнаваемости большим числом людей с нормальным зрением. Это, естественно, повысило достоверность определения остроты зрения. Каждая таблица состоит из нескольких (обычно 10-12) рядов оптотипов. В каждом ряду размеры оптотипов одинаковы, но посте­пенно уменьшаются от первого ряда к последнему. Таблицы рассчитаны для исследования остроты зрения с расстояния 5 м. На этом расстоянии детали оптотипов 10-го ряда видны под углом зрения 1 мин. Следовательно, острота зрения глаза, различающего оптотипы этого ряда, будет равна единице. Если острота зрения иная, то определяют, в каком ряду таблицы исследуемый различает знаки. При этом остроту зрения высчитывают по формуле Снеллена: visus = - , где d - расстояние, с кото­рого проводится исследование, a D - расстояние, с которого нормальный глаз различает знаки этого ряда (проставлено в каждом ряду слева от оптотипов).

    Например, исследуемый с расстояния 5 м читает 1-й ряд. Нормальный глаз различает знаки этого ряда с 50 м. Следовательно, vi-5м sus= =0,1.

    Изменение величины оптотипов выполнено в арифметической прогрессии в десятичной системе так, что при исследовании с 5 м чтение каждой последующей строки сверху вниз свидетельствует об увеличении остроты зрения на одну десятую: верхняя строка - 0,1, вторая - 0,2 и т. д. до 10-й строки, которая соответствует единице. Этот принцип нарушен только в двух последних строках, так как чтение 11-й строки соответствует остроте зрения 1,5, а 12-й - 2 единицам.

    Иногда значение остроты зрения выражается в простых дробях, например 5 / 5 о, 5 /25, где числитель соответствует расстоянию, с которого проводилось исследование, а знаменатель - расстоянию, с которого видит оптотипы этого ряда нормальный глаз. В англо-американской литературе расстояние обозначается в футах, и исследование обычно проводится с расстояния 20 футов, в связи с чем обозначения vis = 20 /4o соответствуют vis = 0,5 и т. п.

    Острота зрения, соответствующая чтению данной строки с расстояния 5 м, проставлена в таблицах в конце каждого ряда, т. е. справа от оптотипов. Если исследование проводится с меньшего расстояния, то пользуясь формулой Снеллена, нетрудно рассчитать остроту зрения для каждого ряда таблицы.

    Для исследования остроты зрения у детей дошкольного возраста используются таблицы, где оптотипами служат рисунки (рис. 50).


    Рис. 50. Таблицы для определения остроты зрения у детей.

    В последнее время для ускорения процесса исследования остроты зрения выпускаются телеуправляемые проекторы оптотипов, что позволяет врачу, не отходя от исследуемого, демонстрировать на экране любые комбинации оптотипов. Такие проекторы (рис. 51) обычно комплектуются с другими аппаратами для исследования глаза.


    Рис. 51. Комбайн для исследования функций глаза.

    Если острота зрения исследуемого меньше 0,1, то определяют расстояние, с которого он различает оптотипы 1-го ряда. Для этого исследуемого постепенно подводят к таблице, или, что более удобно, приближают к нему оптотипы 1-го ряда, пользуясь разрезными таблицами или специальными оптотипами Б. Л. Поляка (рис. 52).

    Рис. 52. Оптотипы Б. Л. Поляка.

    С меньшей степенью точности можно определять низкую остроту зрения, пользуясь вместо оптотипов 1-го ряда демонстрацией пальцев рук на темном фоне, так как толщина пальцев примерно равна ширине линий оптотипов первого ряда таблицы и человек с нормальной остротой зрения может их различать с расстояния 50 м.

    Остроту зрения при этом вычисляют по общей формуле. Например, если исследуемый видит оптотипы 1-го ряда или считает количество демонстрируемых пальцев с расстояния 3 м, то его visus= = 0,06.

    Если острота зрения исследуемого ниже 0,005, то для ее характеристики указывают, с какого расстояния он считает пальцы, например: visus = c46T пальцев на 10 см.

    Когда же зрение так мало, что глаз не различает предметов, а воспринимает только свет, остроту зрения считают равной светоощущению: visus= - (единица, деленная на бесконечность, является математическим выражением бесконечно малой величины). Определение светоощущения проводят с помощью офтальмоскопа (рис. 53).

    Лампу устанавливают слева и сзади от больного и ее свет с помощью вогнутого зеркала направляют на исследуемый глаз с разных сторон. Если исследуемый видит свет и правильно определяет его направление, то остроту зрения оценивают равной светоощущению с правильной светопроекцией и обозначают visus=- proectia lucis certa, или сокращенно - р. 1. с.

    Правильная проекция света свидетельствует о нормальной функции периферических отделов сетчатки и является важным критерием при определении показаний к операции при помутнении оптических сред глаза.

    Если глаз исследуемого неправильно определяет проекцию света хотя бы с одной стороны, то такая острота зрения оценивается как светоощущение с неправильной светопроекцией и обозначается visus = - pr. 1. incerta. Наконец, если исследуемый не ощущает даже света, то его острота зрения равна нулю (visus = 0). Для правильной оценки изменений функционального состояния глаза во время лечения, при экспертизе трудоспособности, освидетельствовании военнообязанных, профессиональном отборе и т. п. необходима стандартная методика исследования остроты зрения для получения соизмеримых результатов. Для этого помещение, где больные ожидают приема, и глазной кабинет должны быть хорошо освещены, так как в период ожидания глаза адаптируются к имеющемуся уровню освещенности и тем самым готовятся к исследованию.

    Таблицы для определения остроты зрения должны быть также хорошо, равномерно и всегда одинаково освещены. Для этого их помещают в специальный осветитель с зеркальными стенками.

    Для освещения применяют электрическую лампу 40 Вт, закрытую со стороны больного щитком. Нижний край осветителя должен находиться на уровне 1,2 м от пола на расстоянии 5 м от больного. Исследование проводят для каждого глаза в отдельности. Для удобства запоминания принято первым проводить исследование правого глаза. Во время исследования оба глаза должны быть открыты. Глаз, который в данный момент не исследуется, заслоняют щитком из белого, непрозрачного, легко дезинфицируемого материала. Иногда разрешается прикрыть глаз ладонью, но без надавливания, так как после надавливания на глазное яблоко острота зрения снижается. Не разрешается во время исследования прищуривать глаза.

    Оптотипы на таблицах показывают указкой, длительность экспозиции каждого знака не более 2-3 с.

    Остроту зрения оценивают по тому ряду, где были правильно названы все знаки. Допускается неправильное распознавание одного знака в рядах, соответствующих остроте зрения 0,3-0,6, и двух знаков в рядах 0,7-1,0, но тогда после записи остроты зрения в скобках указывают, что она неполная.

    Кроме описанного субъективного метода, имеется и объективный метод определения остроты зрения. Он основан на появлении непроизвольного нистагма при рассматривании движущихся объектов. Определение оптокинетического нистагма проводят на нистагмаппарате, в котором через смотровое окно видна лента движущегося барабана с объектами разной величины. Исследуемому демонстрируют подвижные объекты, постепенно уменьшая их размеры. Наблюдая за глазом в роговичный микроскоп, определяют наименьшую величину объектов, которые вызывают нистагмоидные движения глаза.

    Этот метод пока еще не нашел широкого применения в клинике и используется в случаях экспертизы и при исследовании маленьких детей, когда субъективные методы определения остроты зрения недостаточно надежны.

    Цветоощущение

    Способность глаза различать цвета имеет важное значение в различных областях жизнедеятельности. Цветовое зрение не только существенно расширяет информативные возможности зрительного анализатора, но и оказывает несомненное влияние на психофизиологическое состояние организма, являясь в определенной степени регулятором настроения. Велико значение цвета в искусстве: живописи, скульптуре, архитектуре, театре, кино, телевидении. Цвет широко используется в промышленности, транспорте, научных исследованиях и многих других видах народного хозяйства.

    Большое значение цветовое зрение имеет для всех отраслей клинической медицины и особенно офтальмологии. Так, разработанный А. М. Водовозовым метод исследования глазного дна в свете различного спектрального состава (офтальмохромоскопия) позволил проводить «цветовую препаровку» тканей глазного дна, что значительно расширило диагностические возможности офтальмоскопии, офтальмофлюорографии.

    Ощущение цвета, как и ощущение света, возникает в глазу при воздействии на фоторецепторы сетчатки электромагнитных колебаний в области видимой части спектра.

    В 1666 г. Ньютон, пропуская солнечный свет через трехгранную призму, обнаружил, что он состоит из ряда цветов, переходящих друг в друга через множество тонов и оттенков. По аналогии со звуковой гаммой, состоящей из 7 основных тонов, Ньютон выделил в спектре белого цвета 7 основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый.

    Восприятие глазом того или иного цветового тона зависит от длины волны излучения. Можно условно выделить три группы цветов:

    1) длинноволновые - красный и оранжевый;

    2) средневолновые - желтый и зеленый;

    3) коротковолновые - голубой, синий, фиолетовый.

    За пределами хроматической части спектра располагается невидимое невооруженным глазом длинноволновое - инфракрасное и коротковолновое - ультрафиолетовое излучение.

    Все многообразие наблюдаемых в природе цветов разделяется на две группы - ахроматические и хроматические. К ахроматическим относятся белый, серый и черный цвета, где средний человеческий глаз различает до 300 различных оттенков. Все ахроматические цвета характеризует одно качество - яркость, или светлота, т. е. степень близости его к белому цвету.

    К хроматическим цветам относятся все тона и оттенки цветного спектра. Они характеризуются тремя качествами: 1) цветовым тоном, который зависит от длины волны светового излучения; 2) насыщенность, опpeделяемой долей основного тона и примесей к нему; 3) яркостью, или светлостью, цвета, т.е. степенью близости его к белому цвету. Различные комбинации этих характеристик дают несколько десятков тысяч оттенков хроматического цвета.

    В природе редко приходится видеть чистые спектральные тона. Обычно цветность предметов зависит от отражения лучей смешанного спектрального состава, а возникающие зрительные ощущения являются следствием суммарного эффекта.

    Каждый из спектральных цветов имеет дополнительный цвет, при смешивании с которым образуется ахроматический цвет - белый или серый. При смешивании цветов в иных комбинациях возникает ощущение хроматического цвета промежуточного тона.

    Все многообразие цветовых оттенков можно получить путем смешивания только трех основных цветов - красного, зеленого и синего.

    Физиология цветоощущения окончательно не изучена. Наибольшее распространение получила трехкомпонентная теория цветного зрения, выдвинутая в 1756 г. великим русским ученым М. В. Ломоносовым. Она подтверждена работами Юнга (1807), Максвелла (1855) и особенно исследованиями Гельмгольца (1859). Согласно этой теории, в зрительном анализаторе допускается существование трех видов цветоощущающих компонентов, различно реагирующих на свет разной длины волны.

    Цветоощущающие компоненты I типа сильнее всего возбуждаются длинными световыми волнами, слабее - средними и еще слабее - короткими. Компоненты II типа сильнее реагируют на средние световые волны, более слабую реакцию дают на длинные и короткие световые волны. Компоненты III типа слабо возбуждаются длинными, сильнее - средними и больше всего - короткими волнами. Таким образом, свет любой длины волны возбуждает все три цветоощущающих компонента, но в различной степени (рис. 54, см. цветную вклейку).

    При равномерном возбуждении всех трех компонентов создается ощущение белого цвета. Отсутствие раздражения дает ощущение черного цвета. В зависимости от степени возбуждения каждого из трех компонентов суммарно получается все многообразие цветов и их оттенков.

    Рецепторами цвета в сетчатке являются колбочки, но остается невыясненным, локализуются ли специфические цветоощущающие компоненты в различных колбочках или все три вида имеются в каждой из них. Существует предположение, что в ощущении цвета участвуют также биполярные клетки сетчатки и пигментный эпителий.

    Трехкомпонентная теория цветного зрения, как и другие (четырех- и даже семикомпонентные) теории, не может полностью объяснить цветоощущение. В частности, эти теории недостаточно учитывают роль коркового отдела зрительного анализатора. В связи с этим их нельзя считать законченными и совершенными, а следует рассматривать как наиболее удобную рабочую гипотезу.

    Расстройства цветоощущения. Расстройства цветового зрения бывают врожденными и приобретенными. Врожденные именовались раньше дальтонизмом (по имени английского ученого Дальтона, страдавшего этим дефектом зрения и впервые его описавшим). Врожденные аномалии цветоощущения наблюдаются довольно часто - у 8% мужчин и 0,5% женщин.

    В соответствии с трехкомпонентной теорией цветового зрения нормальное ощущение цвета называется нормальной трихромазие и, а люди, им обладающие, - нормальными трихроматами.

    Расстройства цветоощущения могут проявляться либо аномальным восприятием цветов, которое называется цветоаномалией, или аномальной трихромазией, либо полным выпадением одного из трех компонентов - дихрома-зией. В редких случаях наблюдается только черно-белое восприятие - монохромазия.

    Каждый из трех цветорецепторов в зависимости от порядка их расположения в спектре принято обозначать порядковыми греческими цифрами: красный - первый (протос), зеленый - второй (дейторос) и синий - третий (тритос). Таким образом, аномальное восприятие красного цвета называется протаномалиеи, зеленого - дейтераномалией, синего - тританомалией, а людей с таким расстройством называют соответственно протаномалами, дейтераномалами и тританомалами.

    Дихромаз^я наблюдается также в трех формах: а) протанопии, б) дейтеранопии, в) тританопии. Лиц с данной патологией называют протанопами, дейтеранопами и тританопами.

    Среди врожденных расстройств цветоощущения наиболее часто встречается аномальная трихромазия. На ее долю приходится до 70% всей патологии цветоощущения.

    Врожденные расстройства цветоощущения всегда двусторонние и не сопровождаются на­рушением других зрительных функций. Они обнаруживаются только при специальном исследовании.

    Приобретенные расстройства цветоощущения встречаются при заболеваниях сетчатки, зрительного нерва и центральной нервной системы. Они бывают в одном или обоих глазах, выражаются в нарушении восприятия всех трех цветов, обычно сопровождаются расстройством других зрительных функций и в отличие от врожденных расстройств могут претерпевать изменения в процессе заболевания и его лечения.

    К приобретенным расстройствам цветоощущения относится и видение предметов, окрашенных в какой-либо один цвет. В зависимости от тона окраски различают: эритропсию (красный), ксантопсию (желтый), хлоропсию (зеленый) и цианопсию (синий). Эритропсия и цианопсия наблюдаются нередко после экстракции катаракты, а ксантопсия и хлоропсия - при отравлениях и интоксикациях.

    Диагностика. Для работников всех видов транспорта, рабочих ряда отраслей промышленности и при службе в некоторых родах войск необходимо хорошее цветоощущение. Выявление его расстройств - важный этап профессионального отбора и освидетельствования военнообязанных. Следует учитывать, что лица с врожденным расстройством цветоощущения не предъявляют жалоб, не чувствуют аномального цветовосприятия и обычно правильно называют цвета. Ошибки цветовосприятия проявляются только в определенных условиях при одинаковой яркости или насыщенности разных цветов, плохой видимости, малой величине объектов. Для исследования цветового зрения применяются два основных метода: специальные пигментные таблицы и спектральные приборы - аномалоскопы. Из пигментных таблиц наиболее совершенными признаны полихроматические таблицы проф. Е."Б. Рабкина, так как они позволяют установить не только вид, но и степень расстройства цветоощущения (рис. 55 см. цветную вклейку).

    В основе построения таблиц лежит принцип уравнения яркости и насыщенности. Таблица содержит набор тестов. Каждая таблица состоит из кружков основного и дополнительных цветов. Из кружков основного цветаразной насыщенности и яркости составлена цифра или фигура, которая легко различима нормальным трихроматом и не видна людям с расстройством цветоощущения, так как цветослепой человек не может прибегнуть к помощи различия тона и производит уравнивание по насыщенности. В некоторых таблицах имеются скрытые цифры или фигуры, которые могут различать только лица с расстройством цветоощущения. Это повышает точность исследования и делает его более объективным.

    Исследование проводят только при хорошем дневном освещении. Исследуемого усаживают спиной к свету на расстоянии 1 м от таблиц. Врач поочередно демонстрирует тесты таблицы и предлагает называть видимые знаки. Длительность экспозиции каждого теста таблицы 2-3 с, но не более 10 с. Первые два теста правильно читают лица как с нормальным, так и расстроенным цветоощущением. Они служат для контроля и объяснения исследуемому его задачи. Показания по каждому тесту регистрируют и согласуют с указаниями, имеющимися в приложении к таблицам. Анализ полученных данных позволяет определить диагноз цветовой слепоты или вид и степень цветоаномалии.

    К спектральным, наиболее тонким методам диагностики расстройств цветового зрения относится аномалоскопия. (от греч. anomalia - неправильность, skopeo - смотрю).

    В основе действия аномалоскопов лежит сравнение двухцветных полей, из которых одно постоянно освещается монохроматическими желтыми лучами с изменяемой яркостью; другое поле, освещаемое красными и зелеными лучами, может менять тон от чисто красного до чисто зеленого. Смешивая красный и зеленый цвета, исследуемый должен получить желтый цвет, по тону и яркости соответствующий контрольному. Нормальные трихроматы легко решают эту задачу, а цветоаномалы - нет.

    В СССР изготовляется аномалоскоп конструкции Е. Б. Рабкина, при помощи которого при врожденных и приобретенных расстройствах цветового зрения можно проводить исследования во всех участках видимого спектра.



    Понравилась статья? Поделиться с друзьями: